
investigating-a-vix-trading-signal-part-3-trading

January 27, 2026

1 Investigating A VIX Trading Signal
1.1 Python Imports

[1]: # Standard Library
import datetime
import io
import os
import random
import sys
import warnings

from datetime import datetime, timedelta
from pathlib import Path

Data Handling
import numpy as np
import pandas as pd

Data Visualization
import matplotlib.dates as mdates
import matplotlib.pyplot as plt
import matplotlib.ticker as mtick
import seaborn as sns
from matplotlib.ticker import FormatStrFormatter, FuncFormatter, MultipleLocator

Data Sources
import yfinance as yf

Statistical Analysis
import statsmodels.api as sm

Machine Learning
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler

Suppress warnings
warnings.filterwarnings("ignore")

1

1.2 Add Directories To Path
[2]: # Add the source subdirectory to the system path to allow import config from␣

↪settings.py
current_directory = Path(os.getcwd())
website_base_directory = current_directory.parent.parent.parent
src_directory = website_base_directory / "src"
sys.path.append(str(src_directory)) if str(src_directory) not in sys.path else␣

↪None

Import settings.py
from settings import config

Add configured directories from config to path
SOURCE_DIR = config("SOURCE_DIR")
sys.path.append(str(Path(SOURCE_DIR))) if str(Path(SOURCE_DIR)) not in sys.path␣

↪else None

Add other configured directories
BASE_DIR = config("BASE_DIR")
CONTENT_DIR = config("CONTENT_DIR")
POSTS_DIR = config("POSTS_DIR")
PAGES_DIR = config("PAGES_DIR")
PUBLIC_DIR = config("PUBLIC_DIR")
SOURCE_DIR = config("SOURCE_DIR")
DATA_DIR = config("DATA_DIR")
DATA_MANUAL_DIR = config("DATA_MANUAL_DIR")

Print system path
for i, path in enumerate(sys.path):

print(f"{i}: {path}")

0: /usr/lib/python313.zip
1: /usr/lib/python3.13
2: /usr/lib/python3.13/lib-dynload
3:
4: /home/jared/python-virtual-envs/general-venv-p313/lib/python3.13/site-
packages
5:
/home/jared/Cloud_Storage/Dropbox/Websites/jaredszajkowski.github.io_congo/src

1.3 Track Index Dependencies

[3]: # Create file to track markdown dependencies
dep_file = Path("index_dep.txt")
dep_file.write_text("")

[3]: 0

2

1.4 Python Functions

[4]: from calc_vix_trade_pnl import calc_vix_trade_pnl
from df_info import df_info
from df_info_markdown import df_info_markdown
from export_track_md_deps import export_track_md_deps
from load_data import load_data
from pandas_set_decimal_places import pandas_set_decimal_places
from plot_timeseries import plot_timeseries
from plot_stats import plot_stats
from plot_vix_with_trades import plot_vix_with_trades
from yf_pull_data import yf_pull_data

1.5 Data Overview - VIX
1.5.1 Acquire CBOE Volatility Index (VIX) Data

[5]: yf_pull_data(
base_directory=DATA_DIR,
ticker="^VIX",
source="Yahoo_Finance",
asset_class="Indices",
excel_export=True,
pickle_export=True,
output_confirmation=True,

)

[*********************100%***********************] 1 of 1 completed

The first and last date of data for ^VIX is:

Close High Low Open Volume
Date
1990-01-02 17.24 17.24 17.24 17.24 0

Close High Low Open Volume
Date
2026-01-26 16.15 17.389999 15.8 16.9 0

Yahoo Finance data complete for ^VIX

[5]: Close High Low Open Volume
Date
1990-01-02 17.240000 17.240000 17.240000 17.240000 0
1990-01-03 18.190001 18.190001 18.190001 18.190001 0
1990-01-04 19.219999 19.219999 19.219999 19.219999 0
1990-01-05 20.110001 20.110001 20.110001 20.110001 0
1990-01-08 20.260000 20.260000 20.260000 20.260000 0

3

… … … … … …
2026-01-20 20.090000 20.990000 18.639999 19.940001 0
2026-01-21 16.900000 20.809999 16.670000 19.309999 0
2026-01-22 15.640000 16.670000 15.270000 16.650000 0
2026-01-23 16.090000 16.209999 15.300000 15.680000 0
2026-01-26 16.150000 17.389999 15.800000 16.900000 0

[9083 rows x 5 columns]

1.5.2 Load Data - VIX

[6]: # Set decimal places
pandas_set_decimal_places(2)

VIX
vix = load_data(

base_directory=DATA_DIR,
ticker="^VIX",
source="Yahoo_Finance",
asset_class="Indices",
timeframe="Daily",
file_format="excel",

)

Set 'Date' column as datetime
vix['Date'] = pd.to_datetime(vix['Date'])

Drop 'Volume'
vix.drop(columns = {'Volume'}, inplace = True)

Set Date as index
vix.set_index('Date', inplace = True)

Check to see if there are any NaN values
vix[vix['High'].isna()]

Forward fill to clean up missing data
vix['High'] = vix['High'].ffill()

1.5.3 DataFrame Info - VIX

[7]: df_info(vix)

The columns, shape, and data types are:
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 9083 entries, 1990-01-02 to 2026-01-26
Data columns (total 4 columns):
Column Non-Null Count Dtype

4

--- ------ -------------- -----
0 Close 9083 non-null float64
1 High 9083 non-null float64
2 Low 9083 non-null float64
3 Open 9083 non-null float64
dtypes: float64(4)
memory usage: 354.8 KB
None
The first 5 rows are:

Close High Low Open
Date
1990-01-02 17.24 17.24 17.24 17.24
1990-01-03 18.19 18.19 18.19 18.19
1990-01-04 19.22 19.22 19.22 19.22
1990-01-05 20.11 20.11 20.11 20.11
1990-01-08 20.26 20.26 20.26 20.26

The last 5 rows are:

Close High Low Open
Date
2026-01-20 20.09 20.99 18.64 19.94
2026-01-21 16.90 20.81 16.67 19.31
2026-01-22 15.64 16.67 15.27 16.65
2026-01-23 16.09 16.21 15.30 15.68
2026-01-26 16.15 17.39 15.80 16.90

[8]: # Copy this <!-- INSERT_01_VIX_DF_Info_HERE --> to index_temp.md
export_track_md_deps(

dep_file=dep_file,
md_filename="01_VIX_DF_Info.md",
content=df_info_markdown(vix),
output_type="markdown",

)

� Exported and tracked: 01_VIX_DF_Info.md

1.5.4 Statistics - VIX

[9]: vix_stats = vix.describe()
num_std = range(-1, 6) # Adjusted to include -1 to 5
for num in num_std:

vix_stats.loc[f"mean + {num} std"] = {
'Open': vix_stats.loc['mean']['Open'] + num * vix_stats.

↪loc['std']['Open'],
'High': vix_stats.loc['mean']['High'] + num * vix_stats.

↪loc['std']['High'],
'Low': vix_stats.loc['mean']['Low'] + num * vix_stats.loc['std']['Low'],

5

'Close': vix_stats.loc['mean']['Close'] + num * vix_stats.
↪loc['std']['Close'],

}

display(vix_stats)

Close High Low Open
count 9083.00 9083.00 9083.00 9083.00
mean 19.45 20.36 18.78 19.54
std 7.78 8.34 7.34 7.85
min 9.14 9.31 8.56 9.01
25% 13.94 14.60 13.45 13.98
50% 17.58 18.31 16.99 17.64
75% 22.73 23.73 22.06 22.89
max 82.69 89.53 72.76 82.69
mean + -1 std 11.67 12.03 11.44 11.69
mean + 0 std 19.45 20.36 18.78 19.54
mean + 1 std 27.23 28.70 26.11 27.40
mean + 2 std 35.01 37.03 33.45 35.25
mean + 3 std 42.79 45.37 40.79 43.10
mean + 4 std 50.57 53.70 48.12 50.96
mean + 5 std 58.35 62.04 55.46 58.81

[10]: # Copy this <!-- INSERT_01_VIX_Stats_HERE --> to index_temp.md
export_track_md_deps(

dep_file=dep_file,
md_filename="01_VIX_Stats.md",
content=vix_stats.to_markdown(floatfmt=".2f"),
output_type="markdown",

)

� Exported and tracked: 01_VIX_Stats.md

[11]: # Group by year and calculate mean and std for OHLC
vix_stats_by_year = vix.groupby(vix.index.year)[["Open", "High", "Low",␣

↪"Close"]].agg(["mean", "std" ,"min", "max"])

Flatten the column MultiIndex
vix_stats_by_year.columns = ['_'.join(col).strip() for col in vix_stats_by_year.

↪columns.values]
vix_stats_by_year.index.name = "Year"

display(vix_stats_by_year)

Open_mean Open_std Open_min Open_max High_mean High_std High_min \
Year
1990 23.06 4.74 14.72 36.47 23.06 4.74 14.72
1991 18.38 3.68 13.95 36.20 18.38 3.68 13.95
1992 15.23 2.26 10.29 20.67 16.03 2.19 11.90

6

1993 12.70 1.37 9.18 16.20 13.34 1.40 9.55
1994 13.79 2.06 9.86 23.61 14.58 2.28 10.31
1995 12.27 1.03 10.29 15.79 12.93 1.07 10.95
1996 16.31 1.92 11.24 23.90 16.99 2.12 12.29
1997 22.43 4.33 16.67 45.69 23.11 4.56 18.02
1998 25.68 6.96 16.42 47.95 26.61 7.36 16.50
1999 24.39 2.90 18.05 32.62 25.20 3.01 18.48
2000 23.41 3.43 16.81 33.70 24.10 3.66 17.06
2001 26.04 4.98 19.21 48.93 26.64 5.19 19.37
2002 27.53 7.03 17.23 48.17 28.28 7.25 17.51
2003 22.21 5.31 15.59 35.21 22.61 5.35 16.19
2004 15.59 1.93 11.41 21.06 16.05 2.02 11.64
2005 12.84 1.44 10.23 18.33 13.28 1.59 10.48
2006 12.90 2.18 9.68 23.45 13.33 2.46 10.06
2007 17.59 5.36 9.99 32.68 18.44 5.76 10.26
2008 32.83 16.41 16.30 80.74 34.57 17.83 17.84
2009 31.75 9.20 19.54 52.65 32.78 9.61 19.67
2010 22.73 5.29 15.44 47.66 23.69 5.82 16.00
2011 24.27 8.17 14.31 46.18 25.40 8.78 14.99
2012 17.93 2.60 13.68 26.35 18.59 2.72 14.08
2013 14.29 1.67 11.52 20.87 14.82 1.88 11.75
2014 14.23 2.65 10.40 29.26 14.95 3.02 10.76
2015 16.71 3.99 11.77 31.91 17.79 5.03 12.22
2016 16.01 4.05 11.32 29.01 16.85 4.40 11.49
2017 11.14 1.34 9.23 16.19 11.72 1.54 9.52
2018 16.63 5.01 9.01 37.32 18.03 6.12 9.31
2019 15.57 2.74 11.55 27.54 16.41 3.06 11.79
2020 29.52 12.45 12.20 82.69 31.46 13.89 12.42
2021 19.83 3.47 15.02 35.16 21.12 4.22 15.54
2022 25.98 4.30 16.57 37.50 27.25 4.59 17.81
2023 17.12 3.17 11.96 27.77 17.83 3.58 12.46
2024 15.69 3.14 11.53 33.71 16.65 4.73 12.23
2025 19.19 5.57 14.09 60.13 20.44 6.74 14.16
2026 16.22 1.47 14.85 19.94 16.83 1.77 15.21

High_max Low_mean Low_std Low_min Low_max Close_mean Close_std \
Year
1990 36.47 23.06 4.74 14.72 36.47 23.06 4.74
1991 36.20 18.38 3.68 13.95 36.20 18.38 3.68
1992 25.13 14.85 2.14 10.29 19.67 15.45 2.12
1993 18.31 12.25 1.28 8.89 15.77 12.69 1.33
1994 28.30 13.38 1.99 9.59 23.61 13.93 2.07
1995 16.99 11.96 0.98 10.06 14.97 12.39 0.97
1996 27.05 15.94 1.82 11.11 21.43 16.44 1.94
1997 48.64 21.85 3.98 16.36 36.43 22.38 4.14
1998 49.53 24.89 6.58 16.10 45.58 25.60 6.86
1999 33.66 23.75 2.76 17.07 31.13 24.37 2.88
2000 34.31 22.75 3.19 16.28 30.56 23.32 3.41

7

2001 49.35 25.22 4.61 18.74 42.66 25.75 4.78
2002 48.46 26.60 6.64 17.02 42.05 27.29 6.91
2003 35.66 21.64 5.18 14.66 33.99 21.98 5.24
2004 22.67 15.05 1.79 11.14 20.61 15.48 1.92
2005 18.59 12.39 1.32 9.88 16.41 12.81 1.47
2006 23.81 12.38 1.96 9.39 21.45 12.81 2.25
2007 37.50 16.75 4.95 9.70 30.44 17.54 5.36
2008 89.53 30.96 14.96 15.82 72.76 32.69 16.38
2009 57.36 30.50 8.63 19.25 49.27 31.48 9.08
2010 48.20 21.69 4.61 15.23 40.30 22.55 5.27
2011 48.00 23.15 7.59 14.27 41.51 24.20 8.14
2012 27.73 17.21 2.37 13.30 25.72 17.80 2.54
2013 21.91 13.80 1.51 11.05 19.04 14.23 1.74
2014 31.06 13.61 2.21 10.28 24.64 14.17 2.62
2015 53.29 15.85 3.65 10.88 29.91 16.67 4.34
2016 32.09 15.16 3.66 10.93 26.67 15.83 3.97
2017 17.28 10.64 1.16 8.56 14.97 11.09 1.36
2018 50.30 15.53 4.25 8.92 29.66 16.64 5.09
2019 28.53 14.76 2.38 11.03 24.05 15.39 2.61
2020 85.47 27.50 10.85 11.75 70.37 29.25 12.34
2021 37.51 18.65 2.93 14.10 29.24 19.66 3.62
2022 38.94 24.69 3.91 16.34 33.11 25.62 4.22
2023 30.81 16.36 2.89 11.81 24.00 16.87 3.14
2024 65.73 14.92 2.58 10.62 24.02 15.61 3.36
2025 60.13 18.07 4.22 13.38 38.58 18.96 5.32
2026 20.99 15.40 1.06 14.43 18.64 15.87 1.34

Close_min Close_max
Year
1990 14.72 36.47
1991 13.95 36.20
1992 11.51 21.02
1993 9.31 17.30
1994 9.94 23.87
1995 10.36 15.74
1996 12.00 21.99
1997 17.09 38.20
1998 16.23 45.74
1999 17.42 32.98
2000 16.53 33.49
2001 18.76 43.74
2002 17.40 45.08
2003 15.58 34.69
2004 11.23 21.58
2005 10.23 17.74
2006 9.90 23.81
2007 9.89 31.09
2008 16.30 80.86

8

2009 19.47 56.65
2010 15.45 45.79
2011 14.62 48.00
2012 13.45 26.66
2013 11.30 20.49
2014 10.32 25.27
2015 11.95 40.74
2016 11.27 28.14
2017 9.14 16.04
2018 9.15 37.32
2019 11.54 25.45
2020 12.10 82.69
2021 15.01 37.21
2022 16.60 36.45
2023 12.07 26.52
2024 11.86 38.57
2025 13.47 52.33
2026 14.49 20.09

[12]: # Copy this <!-- INSERT_01_VIX_Stats_By_Year_HERE --> to index_temp.md
export_track_md_deps(

dep_file=dep_file,
md_filename="01_VIX_Stats_By_Year.md",
content=vix_stats_by_year.to_markdown(floatfmt=".2f"),
output_type="markdown",

)

� Exported and tracked: 01_VIX_Stats_By_Year.md

[13]: # Group by month and calculate mean and std for OHLC
vix_stats_by_month = vix.groupby(vix.index.month)[["Open", "High", "Low",␣

↪"Close"]].agg(["mean", "std", "min", "max"])

Flatten the column MultiIndex
vix_stats_by_month.columns = ['_'.join(col).strip() for col in␣

↪vix_stats_by_month.columns.values]
vix_stats_by_month.index.name = "Month"

display(vix_stats_by_month)

Open_mean Open_std Open_min Open_max High_mean High_std High_min \
Month
1 19.27 7.15 9.01 51.52 20.06 7.52 9.31
2 19.67 7.22 10.19 52.50 20.51 7.65 10.26
3 20.47 9.63 10.59 82.69 21.39 10.49 11.24
4 19.43 7.48 10.39 60.13 20.24 7.93 10.89
5 18.60 6.04 9.75 47.66 19.40 6.43 10.14
6 18.46 5.75 9.79 44.09 19.15 6.02 10.28

9

7 17.83 5.67 9.18 48.17 18.53 5.90 9.52
8 19.09 6.67 10.04 45.34 20.03 7.38 10.32
9 20.37 8.23 9.59 48.93 21.21 8.55 9.83
10 21.72 10.16 9.23 79.13 22.73 10.97 9.62
11 20.34 9.54 9.31 80.74 21.06 9.91 9.74
12 19.24 8.16 9.36 66.68 19.98 8.43 9.55

High_max Low_mean Low_std Low_min Low_max Close_mean Close_std \
Month
1 57.36 18.54 6.81 8.92 49.27 19.15 7.11
2 53.16 18.90 6.81 9.70 48.97 19.58 7.13
3 85.47 19.54 8.65 10.53 70.37 20.35 9.56
4 60.59 18.65 6.88 10.22 52.76 19.29 7.28
5 48.20 17.89 5.63 9.56 40.30 18.51 5.96
6 44.44 17.73 5.40 9.37 34.97 18.34 5.68
7 48.46 17.21 5.41 8.84 42.05 17.76 5.60
8 65.73 18.35 6.32 9.52 41.77 19.09 6.80
9 49.35 19.62 7.82 9.36 43.74 20.29 8.12
10 89.53 20.82 9.40 9.11 67.80 21.64 10.12
11 81.48 19.53 8.91 8.56 72.76 20.16 9.41
12 68.60 18.53 7.79 8.89 62.31 19.18 8.07

Close_min Close_max
Month
1 9.15 56.65
2 10.02 52.62
3 10.74 82.69
4 10.36 57.06
5 9.77 45.79
6 9.75 40.79
7 9.36 44.92
8 9.93 48.00
9 9.51 46.72
10 9.19 80.06
11 9.14 80.86
12 9.31 68.51

[14]: # Copy this <!-- INSERT_01_VIX_Stats_By_Month_HERE --> to index_temp.md
export_track_md_deps(

dep_file=dep_file,
md_filename="01_VIX_Stats_By_Month.md",
content=vix_stats_by_month.to_markdown(floatfmt=".2f"),
output_type="markdown",

)

� Exported and tracked: 01_VIX_Stats_By_Month.md

10

1.5.5 Deciles - VIX

[15]: vix_deciles = vix.quantile(np.arange(0, 1.1, 0.1))
display(vix_deciles)

Close High Low Open
0.00 9.14 9.31 8.56 9.01
0.10 12.14 12.65 11.73 12.15
0.20 13.30 13.90 12.89 13.35
0.30 14.67 15.36 14.17 14.74
0.40 16.10 16.77 15.57 16.15
0.50 17.58 18.31 16.99 17.64
0.60 19.47 20.32 18.89 19.59
0.70 21.54 22.54 20.89 21.67
0.80 24.23 25.21 23.35 24.31
0.90 28.62 29.90 27.62 28.78
1.00 82.69 89.53 72.76 82.69

[16]: # Copy this <!-- INSERT_01_VIX_Deciles_HERE --> to index_temp.md
export_track_md_deps(

dep_file=dep_file,
md_filename="01_VIX_Deciles.md",
content=vix_deciles.to_markdown(floatfmt=".2f"),
output_type="markdown",

)

� Exported and tracked: 01_VIX_Deciles.md

[17]: # Group by year for deciles
vix_deciles_by_year = vix.groupby(vix.index.year)[["Open", "High", "Low",␣

↪"Close"]].quantile(np.arange(0, 1.1, 0.1))

display(vix_deciles_by_year)

Open High Low Close
Date
1990 0.00 14.72 14.72 14.72 14.72

0.10 17.18 17.18 17.18 17.18
0.20 18.47 18.47 18.47 18.47
0.30 20.08 20.08 20.08 20.08
0.40 21.15 21.15 21.15 21.15

… … … … …
2026 0.60 16.06 16.54 15.30 15.86

0.70 16.43 16.66 15.30 16.03
0.80 16.65 17.39 15.80 16.15
0.90 18.10 19.45 16.44 16.82
1.00 19.94 20.99 18.64 20.09

[407 rows x 4 columns]

11

[18]: # Copy this <!-- INSERT_01_VIX_Deciles_By_Year_HERE --> to index_temp.md
export_track_md_deps(

dep_file=dep_file,
md_filename="01_VIX_Deciles_By_Year.md",
content=vix_deciles_by_year.to_markdown(floatfmt=".2f"),
output_type="markdown",

)

� Exported and tracked: 01_VIX_Deciles_By_Year.md

[19]: current_year = datetime.now().year
last_year = current_year - 1

print(f"Last year: {last_year}")
vix_deciles_last_year = vix_deciles_by_year.loc[last_year]
display(vix_deciles_last_year)

print(f"Current year: {current_year}")
vix_deciles_current_year = vix_deciles_by_year.loc[current_year]
display(vix_deciles_current_year)

Last year: 2025

Open High Low Close
0.00 14.09 14.16 13.38 13.47
0.10 15.15 15.80 14.74 15.04
0.20 15.88 16.50 15.28 15.72
0.30 16.40 17.09 15.77 16.31
0.40 16.79 17.48 16.19 16.64
0.50 17.45 18.21 16.61 17.20
0.60 18.25 19.31 17.42 17.96
0.70 19.52 21.01 18.23 19.13
0.80 21.16 22.84 19.57 21.21
0.90 24.57 26.37 23.29 24.66
1.00 60.13 60.13 38.58 52.33

Current year: 2026

Open High Low Close
0.00 14.85 15.21 14.43 14.49
0.10 14.97 15.35 14.55 14.63
0.20 15.14 15.48 14.65 14.90
0.30 15.40 15.83 14.79 15.25
0.40 15.68 16.21 15.03 15.45
0.50 15.68 16.40 15.21 15.74
0.60 16.06 16.54 15.30 15.86
0.70 16.43 16.66 15.30 16.03
0.80 16.65 17.39 15.80 16.15
0.90 18.10 19.45 16.44 16.82
1.00 19.94 20.99 18.64 20.09

12

[20]: # Copy this <!-- INSERT_01_Last_Year_HERE --> to index_temp.md
export_track_md_deps(

dep_file=dep_file,
md_filename="01_Last_Year.md",
content=f"{last_year}",
output_type="markdown",

)

Copy this <!-- INSERT_01_VIX_Deciles_Last_Year_HERE --> to index_temp.md
export_track_md_deps(

dep_file=dep_file,
md_filename="01_VIX_Deciles_Last_Year.md",
content=vix_deciles_last_year.to_markdown(floatfmt=".2f"),
output_type="markdown",

)

� Exported and tracked: 01_Last_Year.md
� Exported and tracked: 01_VIX_Deciles_Last_Year.md

[21]: # Copy this <!-- INSERT_01_Current_Year_HERE --> to index_temp.md
export_track_md_deps(

dep_file=dep_file,
md_filename="01_Current_Year.md",
content=f"{current_year}",
output_type="markdown",

)

Copy this <!-- INSERT_01_VIX_Deciles_Current_Year_HERE --> to index_temp.md
export_track_md_deps(

dep_file=dep_file,
md_filename="01_VIX_Deciles_Current_Year.md",
content=vix_deciles_current_year.to_markdown(floatfmt=".2f"),
output_type="markdown",

)

� Exported and tracked: 01_Current_Year.md
� Exported and tracked: 01_VIX_Deciles_Current_Year.md

1.6 Time Between Levels
[22]: import pandas as pd

import math
from typing import Literal

Op = Literal["==", ">=", ">", "<=", "<"]

def compare(value: float, threshold: float, op: Op) -> bool:
if op == "==":

13

return value == threshold
if op == ">=":

return value >= threshold
if op == ">":

return value > threshold
if op == "<=":

return value <= threshold
if op == "<":

return value < threshold
raise ValueError(f"Unsupported op: {op}")

def compute_waits(
df: pd.DataFrame,
high_col: str = "High",
trigger_a: float = 20.0,
trigger_b: float = 20.0,
op_a: Op = ">=",
op_b: Op = ">=",
strictly_after: bool = True,

) -> pd.DataFrame:
"""
For each day i where df[high_col] op_a trigger_a, find the next day j
(j > i if strictly_after else j >= i) where df[high_col] op_b trigger_b.
"""
df = df.sort_index()
idx = df.index
highs = df[high_col].values
n = len(df)

rows = []
for i in range(n):

if compare(highs[i], trigger_a, op_a):
start_j = i + 1 if strictly_after else i
j_found = None
for j in range(start_j, n):

if compare(highs[j], trigger_b, op_b):
j_found = j
break

if j_found is None:
next_date = pd.NaT if isinstance(idx, pd.DatetimeIndex) else␣

↪None
next_high = math.nan
wait_td = math.nan
wait_cd = math.nan

else:
next_date = idx[j_found]

14

next_high = float(highs[j_found])
wait_td = j_found - i
if isinstance(idx, pd.DatetimeIndex):

wait_cd = (idx[j_found].normalize() - idx[i].normalize()).
↪days

else:
wait_cd = math.nan

rows.append(
{

"date_a": idx[i],
"high_at_a": float(highs[i]),
"date_b": next_date,
"high_at_b": next_high,
"wait_trading_days": wait_td,
"wait_calendar_days": wait_cd,

}
)

return pd.DataFrame(rows)

[23]: # When daily high <= 15, how long until next daily high >= 20?
res_lt15_to_gt20 = compute_waits(

df=vix,
high_col="High",
trigger_a=15,
trigger_b=20,
op_a="<=",
op_b=">=",
strictly_after=True,

)

res_lt15_to_gt20

[23]: date_a high_at_a date_b high_at_b wait_trading_days \
0 1990-06-21 14.72 1990-07-23 23.68 21
1 1991-03-14 14.94 1991-04-09 20.12 17
2 1991-03-15 14.90 1991-04-09 20.12 16
3 1991-08-13 14.73 1991-08-19 21.19 4
4 1991-08-22 14.59 1991-11-15 21.18 60
… … … … … …
2530 2025-09-12 14.97 2025-10-10 22.44 20
2531 2025-12-23 14.45 2026-01-20 20.99 17
2532 2025-12-24 14.16 2026-01-20 20.99 16
2533 2025-12-26 14.29 2026-01-20 20.99 15
2534 2025-12-30 14.62 2026-01-20 20.99 13

15

wait_calendar_days
0 32
1 26
2 25
3 6
4 85
… …
2530 28
2531 28
2532 27
2533 25
2534 21

[2535 rows x 6 columns]

[24]: # Plot histogram for wait times
import matplotlib.pyplot as plt

plt.figure(figsize=(12, 6))
plt.hist(res_lt15_to_gt20['wait_trading_days'].dropna(), bins=200, alpha=0.5,␣

↪label='LT 15 to GT 20')
plt.xlabel('Days')
plt.ylabel('Frequency')
plt.title('Wait Times for VIX Highs')
plt.legend()
plt.show()

16

[25]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from typing import Optional, Tuple

def compute_wait_cdf(
waits_df: pd.DataFrame,
column: str = "wait_trading_days",

) -> pd.DataFrame:
"""
Compute the empirical CDF for wait times.

Returns a DataFrame with:
- 'wait': unique wait values (sorted)
- 'count': frequency for each wait
- 'cdf': cumulative probability P(Wait <= x)
- 'ccdf': complementary CDF = 1 - cdf (P(Wait > x))

"""
Drop NaNs; don't cast to int (keep original type)
waits = waits_df[column].dropna().to_numpy()
if waits.size == 0:

return pd.DataFrame(columns=["wait", "count", "cdf", "ccdf"])

Unique values and counts
vals, counts = np.unique(waits, return_counts=True)
cum_counts = np.cumsum(counts)
n = waits.size
cdf = cum_counts / n
ccdf = 1.0 - cdf

out = pd.DataFrame(
{"wait": vals, "count": counts, "cdf": cdf, "ccdf": ccdf}

)
return out

[26]: cdf_df = compute_wait_cdf(
waits_df=res_lt15_to_gt20,
column="wait_trading_days")

cdf_df

[26]: wait count cdf ccdf
0 1 1 0.00 1.00
1 2 7 0.00 1.00
2 3 11 0.01 0.99
3 4 15 0.01 0.99
4 5 15 0.02 0.98

17

.. … … … …
461 472 1 1.00 0.00
462 478 1 1.00 0.00
463 479 1 1.00 0.00
464 493 1 1.00 0.00
465 494 1 1.00 0.00

[466 rows x 4 columns]

[27]: # Plot CDF
plt.figure(figsize=(12, 6))
plt.plot(cdf_df['wait'], cdf_df['cdf'])
plt.title('CDF of LT 15 to GT 20')
plt.xlabel('Wait')
plt.ylabel('CDF')
plt.grid()
plt.show()

[28]: import pandas as pd
import numpy as np

def empirical_hit_probabilities(
df: pd.DataFrame,
high_col: str,
thresholds,
horizons,

) -> pd.DataFrame:

18

"""
Compute empirical probability of reaching a threshold high within given␣

↪horizons.

Parameters

df : pd.DataFrame

Sorted daily data with a High column.
high_col : str

Name of the column with daily highs.
thresholds : list of floats

Target levels (e.g. [18,19,20,21,22]).
horizons : list of ints

Lookahead windows in trading days.

Returns

pd.DataFrame

Rows = horizons, Cols = thresholds, entries = probability [0,1].
"""

df = df.sort_index()
highs = df[high_col].values
n = len(highs)

probs = pd.DataFrame(index=horizons, columns=thresholds, dtype=float)

for h in horizons:
valid_starts = n - h # last h days have incomplete windows
if valid_starts <= 0:

continue
window_max = np.array([highs[i+1:i+h+1].max() for i in␣

↪range(valid_starts)])
note: exclude same day (i+1:...) so it's "future" only
for thr in thresholds:

hits = (window_max >= thr).sum()
probs.loc[h, thr] = hits / valid_starts

return probs

[29]: probs = empirical_hit_probabilities(
df=vix,
high_col="High",
thresholds=range(15, 35),
horizons=range(5, 101, 5),

)

19

display(probs)

15 16 17 18 19 20 21 22 23 24 25 26 27 28 \
5 0.78 0.73 0.66 0.59 0.54 0.49 0.44 0.39 0.35 0.30 0.26 0.23 0.20 0.18
10 0.83 0.78 0.71 0.64 0.59 0.54 0.49 0.43 0.40 0.35 0.30 0.27 0.25 0.22
15 0.85 0.81 0.75 0.68 0.62 0.58 0.53 0.47 0.43 0.38 0.34 0.31 0.28 0.26
20 0.87 0.83 0.77 0.71 0.65 0.60 0.56 0.49 0.46 0.41 0.37 0.33 0.31 0.28
25 0.89 0.85 0.80 0.74 0.68 0.63 0.59 0.52 0.49 0.43 0.39 0.36 0.34 0.31
30 0.91 0.87 0.81 0.76 0.70 0.65 0.61 0.54 0.51 0.45 0.42 0.39 0.36 0.33
35 0.92 0.89 0.83 0.77 0.72 0.67 0.63 0.56 0.53 0.47 0.44 0.41 0.38 0.35
40 0.93 0.90 0.84 0.79 0.74 0.69 0.65 0.58 0.55 0.49 0.46 0.43 0.40 0.37
45 0.94 0.91 0.85 0.80 0.75 0.71 0.67 0.60 0.57 0.51 0.47 0.44 0.42 0.39
50 0.94 0.92 0.86 0.81 0.77 0.72 0.69 0.61 0.58 0.52 0.49 0.46 0.44 0.40
55 0.95 0.93 0.87 0.82 0.78 0.74 0.71 0.63 0.60 0.53 0.50 0.47 0.45 0.42
60 0.95 0.93 0.88 0.83 0.80 0.75 0.72 0.64 0.61 0.54 0.51 0.49 0.47 0.43
65 0.96 0.94 0.89 0.84 0.81 0.76 0.74 0.65 0.62 0.55 0.53 0.50 0.48 0.44
70 0.96 0.94 0.90 0.85 0.82 0.78 0.75 0.66 0.63 0.56 0.54 0.51 0.49 0.46
75 0.97 0.95 0.91 0.86 0.83 0.79 0.77 0.67 0.65 0.57 0.55 0.52 0.51 0.47
80 0.97 0.95 0.91 0.87 0.84 0.80 0.78 0.68 0.66 0.58 0.56 0.54 0.52 0.48
85 0.97 0.96 0.92 0.87 0.84 0.80 0.79 0.69 0.67 0.59 0.57 0.55 0.53 0.49
90 0.98 0.96 0.92 0.88 0.85 0.81 0.80 0.70 0.68 0.60 0.58 0.56 0.54 0.50
95 0.98 0.97 0.93 0.88 0.85 0.82 0.81 0.71 0.69 0.61 0.59 0.57 0.55 0.51
100 0.98 0.97 0.93 0.89 0.86 0.83 0.81 0.72 0.69 0.62 0.59 0.57 0.56 0.52

29 30 31 32 33 34
5 0.16 0.14 0.12 0.10 0.09 0.08
10 0.19 0.17 0.15 0.13 0.11 0.10
15 0.22 0.20 0.17 0.15 0.13 0.12
20 0.25 0.22 0.19 0.16 0.15 0.14
25 0.27 0.24 0.22 0.18 0.17 0.15
30 0.29 0.26 0.23 0.20 0.19 0.17
35 0.31 0.28 0.25 0.22 0.20 0.19
40 0.33 0.29 0.27 0.23 0.22 0.20
45 0.34 0.31 0.28 0.25 0.23 0.21
50 0.36 0.32 0.30 0.26 0.24 0.23
55 0.37 0.34 0.31 0.27 0.26 0.24
60 0.38 0.35 0.32 0.29 0.27 0.25
65 0.40 0.37 0.34 0.30 0.28 0.26
70 0.41 0.38 0.35 0.31 0.29 0.28
75 0.42 0.39 0.36 0.32 0.30 0.29
80 0.43 0.41 0.37 0.33 0.31 0.30
85 0.44 0.42 0.39 0.35 0.32 0.31
90 0.45 0.43 0.40 0.36 0.34 0.32
95 0.46 0.44 0.41 0.37 0.35 0.33
100 0.47 0.46 0.42 0.38 0.36 0.34

20

[30]: import pandas as pd
import numpy as np

def conditional_hit_probabilities(
df: pd.DataFrame,
today_high: float,
high_col: str,
thresholds,
horizons,
tolerance: float, # how close history must be to today's high

) -> pd.DataFrame:

"""
Conditional probability of hitting thresholds within horizons,
given today's high is near `today_high`.

Parameters

df : pd.DataFrame

Daily data with highs.
today_high : float

Today's observed high.
high_col : str

Column containing the daily highs.
thresholds : list of floats

Target levels to evaluate (e.g., [18,19,20,...]).
horizons : list of ints

Lookahead windows (in trading days).
tolerance : float

Acceptable deviation from today's high when finding historical␣
↪analogues.

Returns

pd.DataFrame

Probabilities indexed by horizon (rows) and thresholds (columns).
"""

df = df.sort_index()
highs = df[high_col].values
n = len(highs)

Find indices where the high ~ today's high
candidates = np.where((highs >= today_high - tolerance) & (highs <=␣

↪today_high + tolerance))[0]
if len(candidates) == 0:

21

raise ValueError("No historical days found within tolerance of today's␣
↪high")

probs = pd.DataFrame(index=horizons, columns=thresholds, dtype=float)

for h in horizons:
valid_hits = 0
total = 0
for i in candidates:

if i + h < n: # need full window
window_max = highs[i+1:i+h+1].max() # strictly future days
for thr in thresholds:

if np.isnan(probs.loc[h, thr]):
probs.loc[h, thr] = 0.0

if window_max >= thr:
probs.loc[h, thr] += 1

total += 1
if total > 0:

probs.loc[h] /= total # normalize to probability
else:

probs.loc[h] = np.nan # no valid examples

return probs

[31]: # Get yesterday's high as an example
yesterday = vix.iloc[-2]
yesterday_high = vix['High'].iloc[-2]

display(yesterday)
display(yesterday_high)

cond_probs = conditional_hit_probabilities(
df=vix,
today_high=yesterday_high,
high_col="High",
thresholds=range(15, 31),
horizons=range(5, 71, 5),
tolerance=0.25

)

display(cond_probs)

Close 16.09
High 16.21
Low 15.30
Open 15.68
Name: 2026-01-23 00:00:00, dtype: float64

22

np.float64(16.20999908447266)

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 \
5 0.96 0.80 0.46 0.23 0.16 0.08 0.07 0.03 0.02 0.01 0.01 0.01 0.01 0.01 0.00
10 0.97 0.88 0.60 0.39 0.28 0.19 0.16 0.08 0.06 0.04 0.04 0.03 0.02 0.01 0.01
15 0.98 0.91 0.71 0.51 0.40 0.30 0.23 0.16 0.14 0.10 0.09 0.08 0.06 0.05 0.04
20 0.98 0.93 0.77 0.60 0.49 0.38 0.31 0.22 0.19 0.14 0.14 0.11 0.09 0.08 0.06
25 0.98 0.93 0.81 0.66 0.54 0.43 0.36 0.26 0.23 0.19 0.18 0.15 0.13 0.12 0.08
30 0.99 0.95 0.85 0.72 0.60 0.48 0.39 0.30 0.26 0.22 0.21 0.19 0.16 0.14 0.11
35 0.99 0.96 0.87 0.76 0.65 0.52 0.44 0.34 0.31 0.26 0.24 0.21 0.18 0.16 0.12
40 0.99 0.96 0.88 0.78 0.70 0.56 0.50 0.38 0.35 0.30 0.27 0.24 0.20 0.17 0.13
45 0.99 0.96 0.89 0.79 0.72 0.59 0.53 0.41 0.37 0.32 0.29 0.25 0.22 0.18 0.14
50 0.99 0.97 0.89 0.80 0.74 0.61 0.55 0.43 0.39 0.33 0.30 0.26 0.24 0.19 0.15
55 0.99 0.97 0.90 0.81 0.76 0.64 0.59 0.46 0.41 0.35 0.31 0.29 0.26 0.20 0.16
60 0.99 0.97 0.90 0.82 0.78 0.67 0.62 0.48 0.43 0.35 0.32 0.31 0.28 0.22 0.16
65 0.99 0.98 0.91 0.83 0.79 0.68 0.63 0.50 0.44 0.37 0.34 0.32 0.29 0.23 0.17
70 0.99 0.98 0.91 0.84 0.80 0.70 0.65 0.52 0.46 0.39 0.36 0.35 0.31 0.25 0.19

30
5 0.00
10 0.01
15 0.03
20 0.05
25 0.07
30 0.09
35 0.11
40 0.12
45 0.13
50 0.15
55 0.16
60 0.16
65 0.17
70 0.19

1.7 Plots - VIX
1.7.1 Histogram Distribution - VIX

[32]: # Plotting
plt.figure(figsize=(12, 6), facecolor="#F5F5F5")

Histogram
plt.hist([vix['High']], label=['High'], bins=200, edgecolor='black',␣

↪color='steelblue', alpha=1)
plt.hist([vix['Low']], label=['Low'], bins=200, edgecolor='black',␣

↪color='lightblue', alpha=0.5)

Plot a vertical line at the mean, mean + 1 std, and mean + 2 std

23

plt.axvline(vix_stats.loc['mean + -1 std']['High'], color='brown',␣
↪linestyle='dashed', linewidth=1, label=f'High Mean - 1 std: {vix_stats.
↪loc['mean + -1 std']['High']:.2f}')

plt.axvline(vix_stats.loc['mean + -1 std']['Low'], color='brown',␣
↪linestyle='solid', linewidth=1, label=f'Low Mean - 1 std: {vix_stats.
↪loc['mean + -1 std']['Low']:.2f}')

plt.axvline(vix_stats.loc['mean']['High'], color='red', linestyle='dashed',␣
↪linewidth=1, label=f'High Mean: {vix_stats.loc['mean']['High']:.2f}')

plt.axvline(vix_stats.loc['mean']['Low'], color='red', linestyle='solid',␣
↪linewidth=1, label=f'Low Mean: {vix_stats.loc['mean']['Low']:.2f}')

plt.axvline(vix_stats.loc['mean + 1 std']['High'], color='green',␣
↪linestyle='dashed', linewidth=1, label=f'High Mean + 1 std: {vix_stats.
↪loc['mean + 1 std']['High']:.2f}')

plt.axvline(vix_stats.loc['mean + 1 std']['Low'], color='green',␣
↪linestyle='solid', linewidth=1, label=f'Low Mean + 1 std: {vix_stats.
↪loc['mean + 1 std']['Low']:.2f}')

plt.axvline(vix_stats.loc['mean + 2 std']['High'], color='orange',␣
↪linestyle='dashed', linewidth=1, label=f'High Mean + 2 std: {vix_stats.
↪loc['mean + 2 std']['High']:.2f}')

plt.axvline(vix_stats.loc['mean + 2 std']['Low'], color='orange',␣
↪linestyle='solid', linewidth=1, label=f'Low Mean + 2 std: {vix_stats.
↪loc['mean + 2 std']['Low']:.2f}')

plt.axvline(vix_stats.loc['mean + 3 std']['High'], color='black',␣
↪linestyle='dashed', linewidth=1, label=f'High Mean + 3 std: {vix_stats.
↪loc['mean + 3 std']['High']:.2f}')

plt.axvline(vix_stats.loc['mean + 3 std']['Low'], color='black',␣
↪linestyle='solid', linewidth=1, label=f'Low Mean + 3 std: {vix_stats.
↪loc['mean + 3 std']['Low']:.2f}')

plt.axvline(vix_stats.loc['mean + 4 std']['High'], color='yellow',␣
↪linestyle='dashed', linewidth=1, label=f'High Mean + 4 std: {vix_stats.
↪loc['mean + 4 std']['High']:.2f}')

plt.axvline(vix_stats.loc['mean + 4 std']['Low'], color='yellow',␣
↪linestyle='solid', linewidth=1, label=f'Low Mean + 4 std: {vix_stats.
↪loc['mean + 4 std']['Low']:.2f}')

Set X axis
x_tick_spacing = 5 # Specify the interval for y-axis ticks
plt.gca().xaxis.set_major_locator(MultipleLocator(x_tick_spacing))
plt.xlabel("VIX", fontsize=10)
plt.xticks(rotation=0, fontsize=8)

24

Set Y axis
y_tick_spacing = 25 # Specify the interval for y-axis ticks
plt.gca().yaxis.set_major_locator(MultipleLocator(y_tick_spacing))
plt.ylabel("# Of Datapoints", fontsize=10)
plt.yticks(fontsize=8)

Set title, layout, grid, and legend
plt.title("CBOE Volatility Index (VIX) Histogram (200 Bins)", fontsize=12)
plt.tight_layout()
plt.grid(True, linestyle='--', alpha=0.7)
plt.legend(fontsize=9)

Save figure and display plot
plt.savefig("01_Histogram+Mean+SD.png", dpi=300, bbox_inches="tight")
plt.show()

1.7.2 Historical Data - VIX

[33]: plot_timeseries(
price_df=vix,
plot_start_date=None,
plot_end_date="2009-12-31",
plot_columns=["High", "Low"],
title="CBOE Volatility Index (VIX), 1990 - 2009",
x_label="Date",
x_format="Year",
y_label="VIX",
y_format="Decimal",

25

y_format_decimal_places=0,
y_tick_spacing=5,
grid=True,
legend=True,
export_plot=True,
plot_file_name="01_VIX_Plot_1990-2009",

)

[34]: plot_timeseries(
price_df=vix,
plot_start_date="2010-01-01",
plot_end_date=None,
plot_columns=["High", "Low"],
title="CBOE Volatility Index (VIX), 2010 - Present",
x_label="Date",
x_format="Year",
y_label="VIX",
y_format="Decimal",
y_format_decimal_places=0,
y_tick_spacing=5,
grid=True,
legend=True,
export_plot=True,
plot_file_name="01_VIX_Plot_2010-Present",

)

26

[35]: plot_timeseries(
price_df=vix,
plot_start_date="2024-01-01",
plot_end_date=None,
plot_columns=["High", "Low"],
title="CBOE Volatility Index (VIX), 2024 - Present",
x_label="Date",
x_format="Year",
y_label="VIX",
y_format="Decimal",
y_format_decimal_places=0,
y_tick_spacing=5,
grid=True,
legend=True,
export_plot=True,
plot_file_name="01_VIX_Plot_2024-Present",

)

27

[36]: plot_timeseries(
price_df=vix,
plot_start_date="2025-01-01",
plot_end_date=None,
plot_columns=["High", "Low"],
title="CBOE Volatility Index (VIX), 2025 - Present",
x_label="Date",
x_format="Year",
y_label="VIX",
y_format="Decimal",
y_format_decimal_places=0,
y_tick_spacing=5,
grid=True,
legend=True,
export_plot=True,
plot_file_name="01_VIX_Plot_2025-Present",

)

28

1.7.3 Stats By Year - VIX

[37]: plot_stats(
stats_df=vix_stats_by_year,
plot_columns=["Open_mean", "High_mean", "Low_mean", "Close_mean"],
title="VIX Mean OHLC By Year",
x_label="Year",
x_rotation=45,
x_tick_spacing=1,
y_label="Price",
y_tick_spacing=1,
grid=True,
legend=True,
export_plot=True,
plot_file_name="01_VIX_Stats_By_Year"

)

29

1.7.4 Stats By Month - VIX

[38]: plot_stats(
stats_df=vix_stats_by_month,
plot_columns=["Open_mean", "High_mean", "Low_mean", "Close_mean"],
title="VIX Mean OHLC By Month",
x_label="Month",
x_rotation=0,
x_tick_spacing=1,
y_label="Price",
y_tick_spacing=1,
grid=True,
legend=True,
export_plot=True,
plot_file_name="01_VIX_Stats_By_Month"

)

30

1.8 Data Overview - VVIX
1.8.1 Acquire CBOE VVIX Data

[39]: yf_pull_data(
base_directory=DATA_DIR,
ticker="^VVIX",
source="Yahoo_Finance",
asset_class="Indices",
excel_export=True,
pickle_export=True,
output_confirmation=True,

)

[*********************100%***********************] 1 of 1 completed

The first and last date of data for ^VVIX is:

Close High Low Open Volume
Date
2007-01-03 87.63 87.63 87.63 87.63 0

Close High Low Open Volume
Date
2026-01-26 99.75 102.62 99.01 102.62 0

Yahoo Finance data complete for ^VVIX

31

[39]: Close High Low Open Volume
Date
2007-01-03 87.63 87.63 87.63 87.63 0
2007-01-04 88.19 88.19 88.19 88.19 0
2007-01-05 90.17 90.17 90.17 90.17 0
2007-01-08 92.04 92.04 92.04 92.04 0
2007-01-09 92.76 92.76 92.76 92.76 0
… … … … … …
2026-01-20 117.05 120.21 110.28 118.27 0
2026-01-21 102.57 113.46 101.47 112.72 0
2026-01-22 96.12 101.96 95.93 100.10 0
2026-01-23 101.83 101.91 96.23 99.03 0
2026-01-26 99.75 102.62 99.01 102.62 0

[4787 rows x 5 columns]

1.8.2 Load Data - VVIX

[40]: # Set decimal places
pandas_set_decimal_places(2)

VVIX
vvix = load_data(

base_directory=DATA_DIR,
ticker="^VVIX",
source="Yahoo_Finance",
asset_class="Indices",
timeframe="Daily",
file_format="excel",

)

Set 'Date' column as datetime
vvix['Date'] = pd.to_datetime(vvix['Date'])

Drop 'Volume'
vvix.drop(columns = {'Volume'}, inplace = True)

Set Date as index
vvix.set_index('Date', inplace = True)

Check to see if there are any NaN values
vvix[vvix['High'].isna()]

Forward fill to clean up missing data
vvix['High'] = vvix['High'].ffill()

32

1.8.3 DataFrame Info - VVIX

[41]: df_info(vvix)

The columns, shape, and data types are:
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 4787 entries, 2007-01-03 to 2026-01-26
Data columns (total 4 columns):
Column Non-Null Count Dtype
--- ------ -------------- -----
0 Close 4787 non-null float64
1 High 4787 non-null float64
2 Low 4787 non-null float64
3 Open 4787 non-null float64
dtypes: float64(4)
memory usage: 187.0 KB
None
The first 5 rows are:

Close High Low Open
Date
2007-01-03 87.63 87.63 87.63 87.63
2007-01-04 88.19 88.19 88.19 88.19
2007-01-05 90.17 90.17 90.17 90.17
2007-01-08 92.04 92.04 92.04 92.04
2007-01-09 92.76 92.76 92.76 92.76

The last 5 rows are:

Close High Low Open
Date
2026-01-20 117.05 120.21 110.28 118.27
2026-01-21 102.57 113.46 101.47 112.72
2026-01-22 96.12 101.96 95.93 100.10
2026-01-23 101.83 101.91 96.23 99.03
2026-01-26 99.75 102.62 99.01 102.62

[42]: # Copy this <!-- INSERT_02_VVIX_DF_Info_HERE --> to index_temp.md
export_track_md_deps(

dep_file=dep_file,
md_filename="02_VVIX_DF_Info.md",
content=df_info_markdown(vix),
output_type="markdown",

)

� Exported and tracked: 02_VVIX_DF_Info.md

33

1.8.4 Statistics - VVIX

[43]: vvix_stats = vvix.describe()
num_std = [-1, 0, 1, 2, 3, 4, 5]
for num in num_std:

vvix_stats.loc[f"mean + {num} std"] = {
'Open': vvix_stats.loc['mean']['Open'] + num * vvix_stats.

↪loc['std']['Open'],
'High': vvix_stats.loc['mean']['High'] + num * vvix_stats.

↪loc['std']['High'],
'Low': vvix_stats.loc['mean']['Low'] + num * vvix_stats.

↪loc['std']['Low'],
'Close': vvix_stats.loc['mean']['Close'] + num * vvix_stats.

↪loc['std']['Close'],
}

display(vvix_stats)

Close High Low Open
count 4787.00 4787.00 4787.00 4787.00
mean 93.66 95.76 92.07 93.91
std 16.26 17.89 14.91 16.31
min 59.74 59.74 59.31 59.31
25% 82.59 83.81 81.69 82.84
50% 90.89 92.70 89.72 91.30
75% 102.13 105.07 99.86 102.58
max 207.59 212.22 187.27 212.22
mean + -1 std 77.40 77.87 77.16 77.60
mean + 0 std 93.66 95.76 92.07 93.91
mean + 1 std 109.92 113.65 106.98 110.23
mean + 2 std 126.18 131.53 121.90 126.54
mean + 3 std 142.44 149.42 136.81 142.85
mean + 4 std 158.70 167.31 151.72 159.17
mean + 5 std 174.96 185.19 166.63 175.48

[44]: # Copy this <!-- INSERT_02_VVIX_Stats_HERE --> to index_temp.md
export_track_md_deps(

dep_file=dep_file,
md_filename="02_VVIX_Stats.md",
content=vvix_stats.to_markdown(floatfmt=".2f"),
output_type="markdown",

)

� Exported and tracked: 02_VVIX_Stats.md

[45]: # Group by year and calculate mean and std for OHLC
vvix_stats_by_year = vvix.groupby(vvix.index.year)[["Open", "High", "Low",␣

↪"Close"]].agg(["mean", "std", "min", "max"])

34

Flatten the column MultiIndex
vvix_stats_by_year.columns = ['_'.join(col).strip() for col in␣

↪vvix_stats_by_year.columns.values]
vvix_stats_by_year.index.name = "Year"

display(vvix_stats_by_year)

Open_mean Open_std Open_min Open_max High_mean High_std High_min \
Year
2007 87.68 13.31 63.52 142.99 87.68 13.31 63.52
2008 81.85 15.60 59.74 134.87 81.85 15.60 59.74
2009 79.78 8.63 64.95 104.02 79.78 8.63 64.95
2010 88.36 13.07 64.87 145.12 88.36 13.07 64.87
2011 92.94 10.21 75.94 134.63 92.94 10.21 75.94
2012 94.84 8.38 78.42 117.44 94.84 8.38 78.42
2013 80.52 8.97 62.71 111.43 80.52 8.97 62.71
2014 83.01 14.33 61.76 138.60 83.01 14.33 61.76
2015 95.44 15.59 73.07 212.22 98.47 16.39 76.41
2016 93.36 10.02 77.96 131.95 95.82 10.86 78.86
2017 90.50 8.65 75.09 134.98 92.94 9.64 77.34
2018 102.60 13.22 83.70 176.72 106.27 16.26 85.00
2019 91.28 8.43 75.58 112.75 93.61 8.98 75.95
2020 118.64 19.32 88.39 203.03 121.91 20.88 88.54
2021 115.51 9.37 96.09 151.35 119.29 11.70 98.36
2022 102.58 18.01 76.48 161.09 105.32 19.16 77.93
2023 90.95 8.64 74.43 127.73 93.72 9.98 75.31
2024 92.88 15.06 59.31 169.68 97.32 18.33 74.79
2025 101.94 12.83 83.19 186.33 106.13 15.40 84.54
2026 98.43 8.48 89.81 118.27 100.45 8.70 90.43

High_max Low_mean Low_std Low_min Low_max Close_mean Close_std \
Year
2007 142.99 87.68 13.31 63.52 142.99 87.68 13.31
2008 134.87 81.85 15.60 59.74 134.87 81.85 15.60
2009 104.02 79.78 8.63 64.95 104.02 79.78 8.63
2010 145.12 88.36 13.07 64.87 145.12 88.36 13.07
2011 134.63 92.94 10.21 75.94 134.63 92.94 10.21
2012 117.44 94.84 8.38 78.42 117.44 94.84 8.38
2013 111.43 80.52 8.97 62.71 111.43 80.52 8.97
2014 138.60 83.01 14.33 61.76 138.60 83.01 14.33
2015 212.22 92.15 13.35 72.20 148.68 94.82 14.75
2016 132.42 90.54 8.99 76.17 115.15 92.80 10.07
2017 135.32 87.85 7.78 71.75 117.29 90.01 8.80
2018 203.73 99.17 11.31 82.60 165.35 102.26 14.04
2019 117.63 88.90 7.86 74.36 111.48 91.03 8.36
2020 209.76 115.05 17.37 85.31 187.27 118.36 19.39
2021 168.78 111.99 8.14 95.92 144.19 115.32 10.20
2022 172.82 99.17 16.81 76.13 153.26 101.81 17.81

35

2023 137.65 88.01 7.37 72.27 119.64 90.34 8.38
2024 192.49 89.51 13.16 59.31 137.05 92.81 15.60
2025 189.03 98.38 10.11 81.72 146.51 101.32 12.36
2026 120.21 95.34 6.43 86.70 110.28 97.43 7.76

Close_min Close_max
Year
2007 63.52 142.99
2008 59.74 134.87
2009 64.95 104.02
2010 64.87 145.12
2011 75.94 134.63
2012 78.42 117.44
2013 62.71 111.43
2014 61.76 138.60
2015 73.18 168.75
2016 76.17 125.13
2017 75.64 135.32
2018 83.21 180.61
2019 74.98 114.40
2020 86.87 207.59
2021 97.09 157.69
2022 77.05 154.38
2023 73.88 124.75
2024 73.26 173.32
2025 81.89 170.92
2026 88.19 117.05

[46]: # Copy this <!-- INSERT_02_VVIX_Stats_By_Year_HERE --> to index_temp.md
export_track_md_deps(

dep_file=dep_file,
md_filename="02_VVIX_Stats_By_Year.md",
content=vvix_stats_by_year.to_markdown(floatfmt=".2f"),
output_type="markdown",

)

� Exported and tracked: 02_VVIX_Stats_By_Year.md

[47]: # Group by month and calculate mean and std for OHLC
vvix_stats_by_month = vvix.groupby(vvix.index.month)[["Open", "High", "Low",␣

↪"Close"]].agg(["mean", "std", "min", "max"])

Flatten the column MultiIndex
vvix_stats_by_month.columns = ['_'.join(col).strip() for col in␣

↪vvix_stats_by_month.columns.values]
vvix_stats_by_month.index.name = "Year"

display(vvix_stats_by_month)

36

Open_mean Open_std Open_min Open_max High_mean High_std High_min \
Year
1 92.70 15.45 64.87 161.09 94.62 17.39 64.87
2 93.49 18.24 65.47 176.72 95.39 20.70 65.47
3 95.30 21.66 66.97 203.03 97.38 23.56 66.97
4 92.18 19.03 59.74 186.33 94.01 20.57 59.74
5 92.25 16.93 61.76 145.18 93.95 17.99 61.76
6 93.16 14.86 63.52 155.48 94.76 16.11 63.52
7 90.10 12.82 67.21 138.42 91.63 13.88 67.21
8 96.84 16.53 68.05 212.22 98.99 18.33 68.05
9 94.91 13.70 67.94 135.17 96.84 15.36 67.94
10 98.05 13.86 64.97 149.60 99.88 15.05 64.97
11 94.24 14.31 63.77 142.68 95.93 15.64 63.77
12 93.32 14.67 59.31 151.35 95.31 16.24 62.71

High_max Low_mean Low_std Low_min Low_max Close_mean Close_std \
Year
1 172.82 90.87 14.03 64.87 153.26 92.44 15.56
2 203.73 91.39 16.43 65.47 165.35 93.13 18.58
3 209.76 92.94 19.51 66.97 187.27 94.89 21.59
4 189.03 90.30 17.21 59.74 152.01 91.88 18.60
5 151.50 90.54 16.14 61.76 145.12 91.79 16.79
6 172.21 91.49 13.79 63.52 140.15 92.98 14.83
7 149.60 88.60 11.94 67.21 133.82 89.98 12.78
8 212.22 94.67 14.50 68.05 148.68 96.61 16.24
9 147.14 93.04 12.20 67.94 128.46 94.58 13.44
10 154.99 96.36 13.11 64.97 144.55 97.87 14.02
11 161.76 92.55 13.40 63.77 140.44 93.95 14.37
12 168.37 91.71 13.37 59.31 144.19 93.38 14.72

Close_min Close_max
Year
1 64.87 157.69
2 65.47 180.61
3 66.97 207.59
4 59.74 170.92
5 61.76 146.28
6 63.52 151.60
7 67.21 139.54
8 68.05 173.32
9 67.94 138.93
10 64.97 152.01
11 63.77 149.74
12 62.71 156.10

[48]: # Copy this <!-- INSERT_02_VVIX_Stats_By_Month_HERE --> to index_temp.md
export_track_md_deps(

37

dep_file=dep_file,
md_filename="02_VVIX_Stats_By_Month.md",
content=vvix_stats_by_month.to_markdown(floatfmt=".2f"),
output_type="markdown",

)

� Exported and tracked: 02_VVIX_Stats_By_Month.md

1.8.5 Deciles - VVIX

[49]: vvix_deciles = vvix.quantile(np.arange(0, 1.1, 0.1))
display(vvix_deciles)

Close High Low Open
0.00 59.74 59.74 59.31 59.31
0.10 76.05 76.41 75.59 76.14
0.20 80.83 81.67 80.03 80.99
0.30 84.19 85.58 83.31 84.50
0.40 87.54 88.97 86.39 87.81
0.50 90.89 92.70 89.72 91.30
0.60 94.49 96.66 93.28 94.81
0.70 99.18 101.75 97.47 99.48
0.80 105.84 109.38 103.68 106.43
0.90 115.10 118.68 112.33 115.28
1.00 207.59 212.22 187.27 212.22

[50]: # Copy this <!-- INSERT_02_VVIX_Deciles_HERE --> to index_temp.md
export_track_md_deps(

dep_file=dep_file,
md_filename="02_VVIX_Deciles.md",
content=vvix_deciles.to_markdown(floatfmt=".2f"),
output_type="markdown",

)

� Exported and tracked: 02_VVIX_Deciles.md

1.9 Plots - VVIX
1.9.1 Histogram Distribution - VVIX

[51]: # Plotting
plt.figure(figsize=(12, 6), facecolor="#F5F5F5")

Histogram
plt.hist([vvix['High']], label=['High'], bins=200, edgecolor='black',␣

↪color='steelblue', alpha=1)
plt.hist([vvix['Low']], label=['Low'], bins=200, edgecolor='black',␣

↪color='lightblue', alpha=0.5)

38

Plot a vertical line at the mean, mean + 1 std, and mean + 2 std
plt.axvline(vvix_stats.loc['mean + -1 std']['High'], color='brown',␣

↪linestyle='dashed', linewidth=1, label=f'High Mean - 1 std: {vvix_stats.
↪loc['mean + -1 std']['High']:.2f}')

plt.axvline(vvix_stats.loc['mean + -1 std']['Low'], color='brown',␣
↪linestyle='solid', linewidth=1, label=f'Low Mean - 1 std: {vvix_stats.
↪loc['mean + -1 std']['Low']:.2f}')

plt.axvline(vvix_stats.loc['mean']['High'], color='red', linestyle='dashed',␣
↪linewidth=1, label=f'High Mean: {vvix_stats.loc['mean']['High']:.2f}')

plt.axvline(vvix_stats.loc['mean']['Low'], color='red', linestyle='solid',␣
↪linewidth=1, label=f'Low Mean: {vvix_stats.loc['mean']['Low']:.2f}')

plt.axvline(vvix_stats.loc['mean + 1 std']['High'], color='green',␣
↪linestyle='dashed', linewidth=1, label=f'High Mean + 1 std: {vvix_stats.
↪loc['mean + 1 std']['High']:.2f}')

plt.axvline(vvix_stats.loc['mean + 1 std']['Low'], color='green',␣
↪linestyle='solid', linewidth=1, label=f'Low Mean + 1 std: {vvix_stats.
↪loc['mean + 1 std']['Low']:.2f}')

plt.axvline(vvix_stats.loc['mean + 2 std']['High'], color='orange',␣
↪linestyle='dashed', linewidth=1, label=f'High Mean + 2 std: {vvix_stats.
↪loc['mean + 2 std']['High']:.2f}')

plt.axvline(vvix_stats.loc['mean + 2 std']['Low'], color='orange',␣
↪linestyle='solid', linewidth=1, label=f'Low Mean + 2 std: {vvix_stats.
↪loc['mean + 2 std']['Low']:.2f}')

plt.axvline(vvix_stats.loc['mean + 3 std']['High'], color='black',␣
↪linestyle='dashed', linewidth=1, label=f'High Mean + 3 std: {vvix_stats.
↪loc['mean + 3 std']['High']:.2f}')

plt.axvline(vvix_stats.loc['mean + 3 std']['Low'], color='black',␣
↪linestyle='solid', linewidth=1, label=f'Low Mean + 3 std: {vvix_stats.
↪loc['mean + 3 std']['Low']:.2f}')

plt.axvline(vvix_stats.loc['mean + 4 std']['High'], color='yellow',␣
↪linestyle='dashed', linewidth=1, label=f'High Mean + 4 std: {vvix_stats.
↪loc['mean + 4 std']['High']:.2f}')

plt.axvline(vvix_stats.loc['mean + 4 std']['Low'], color='yellow',␣
↪linestyle='solid', linewidth=1, label=f'Low Mean + 4 std: {vvix_stats.
↪loc['mean + 4 std']['Low']:.2f}')

Set X axis
x_tick_spacing = 5 # Specify the interval for y-axis ticks
plt.gca().xaxis.set_major_locator(MultipleLocator(x_tick_spacing))
plt.xlabel("VVIX", fontsize=10)
plt.xticks(rotation=0, fontsize=8)

39

Set Y axis
y_tick_spacing = 25 # Specify the interval for y-axis ticks
plt.gca().yaxis.set_major_locator(MultipleLocator(y_tick_spacing))
plt.ylabel("# Of Datapoints", fontsize=10)
plt.yticks(fontsize=8)

Set title, layout, grid, and legend
plt.title("CBOE VVIX Histogram (200 Bins)", fontsize=12)
plt.tight_layout()
plt.grid(True, linestyle='--', alpha=0.7)
plt.legend(fontsize=9)

Save figure and display plot
plt.savefig("02_Histogram+Mean+SD.png", dpi=300, bbox_inches="tight")
plt.show()

1.9.2 Historical Data - VVIX

[52]: plot_timeseries(
price_df=vvix,
plot_start_date=None,
plot_end_date="2016-12-31",
plot_columns=["High", "Low"],
title="CBOE VVIX, 2007 - 2016",
x_label="Date",
x_format="Year",
y_label="VIX",

40

y_format="Decimal",
y_format_decimal_places=0,
y_tick_spacing=15,
grid=True,
legend=True,
export_plot=True,
plot_file_name="02_VVIX_Plot_2007-2016",

)

[53]: plot_timeseries(
price_df=vvix,
plot_start_date="2017-01-01",
plot_end_date=None,
plot_columns=["High", "Low"],
title="CBOE VVIX, 2017 - Present",
x_label="Date",
x_format="Year",
y_label="VIX",
y_format="Decimal",
y_format_decimal_places=0,
y_tick_spacing=15,
grid=True,
legend=True,
export_plot=True,
plot_file_name="02_VVIX_Plot_2017-Present",

41

)

[54]: plot_timeseries(
price_df=vvix,
plot_start_date="2024-01-01",
plot_end_date=None,
plot_columns=["High", "Low"],
title="CBOE VVIX, 2024 - Present",
x_label="Date",
x_format="Month",
y_label="VIX",
y_format="Decimal",
y_format_decimal_places=0,
y_tick_spacing=15,
grid=True,
legend=True,
export_plot=True,
plot_file_name="02_VVIX_Plot_2024-Present",

)

42

[55]: plot_timeseries(
price_df=vvix,
plot_start_date="2025-01-01",
plot_end_date=None,
plot_columns=["High", "Low"],
title="CBOE VVIX, 2025 - Present",
x_label="Date",
x_format="Month",
y_label="VIX",
y_format="Decimal",
y_format_decimal_places=0,
y_tick_spacing=15,
grid=True,
legend=True,
export_plot=True,
plot_file_name="02_VVIX_Plot_2025-Present",

)

43

1.9.3 Stats By Year - VVIX

[56]: plot_stats(
stats_df=vvix_stats_by_year,
plot_columns=["Open_mean", "High_mean", "Low_mean", "Close_mean"],
title="VVIX Mean OHLC By Year",
x_label="Year",
x_rotation=45,
x_tick_spacing=1,
y_label="Price",
y_tick_spacing=5,
grid=True,
legend=True,
export_plot=True,
plot_file_name="02_VVIX_Stats_By_Year"

)

44

1.9.4 Stats By Month - VVIX

[57]: plot_stats(
stats_df=vvix_stats_by_month,
plot_columns=["Open_mean", "High_mean", "Low_mean", "Close_mean"],
title="VVIX Mean OHLC By Month",
x_label="Month",
x_rotation=0,
x_tick_spacing=1,
y_label="Price",
y_tick_spacing=1,
grid=True,
legend=True,
export_plot=True,
plot_file_name="02_VVIX_Stats_By_Month"

)

45

1.10 Data Overview - VIX/VVIX
1.10.1 Merge VIX & VVIX Data

[58]: # Merge VIX and VVIX dataframes on Date
vix_over_vvix = pd.merge(vix, vvix, left_index=True, right_index=True,␣

↪suffixes=('_VIX', '_VVIX'))

Calc VIX/VVIX ratios
vix_over_vvix['Close_VIX_to_VVIX_Ratio'] = vix_over_vvix['Close_VIX'] /␣

↪vix_over_vvix['Close_VVIX']
vix_over_vvix['High_VIX_to_VVIX_Ratio'] = vix_over_vvix['High_VIX'] /␣

↪vix_over_vvix['High_VVIX']
vix_over_vvix['Low_VIX_to_VVIX_Ratio'] = vix_over_vvix['Low_VIX'] /␣

↪vix_over_vvix['Low_VVIX']
vix_over_vvix['Open_VIX_to_VVIX_Ratio'] = vix_over_vvix['Open_VIX'] /␣

↪vix_over_vvix['Open_VVIX']

Drop VIX and VVIX columns, keep only ratio columns
vix_over_vvix = vix_over_vvix[['Close_VIX_to_VVIX_Ratio',␣

↪'High_VIX_to_VVIX_Ratio', 'Low_VIX_to_VVIX_Ratio', 'Open_VIX_to_VVIX_Ratio']]

[59]: df_info(vix_over_vvix)

The columns, shape, and data types are:
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 4787 entries, 2007-01-03 to 2026-01-26
Data columns (total 4 columns):
Column Non-Null Count Dtype

46

--- ------ -------------- -----
0 Close_VIX_to_VVIX_Ratio 4787 non-null float64
1 High_VIX_to_VVIX_Ratio 4787 non-null float64
2 Low_VIX_to_VVIX_Ratio 4787 non-null float64
3 Open_VIX_to_VVIX_Ratio 4787 non-null float64
dtypes: float64(4)
memory usage: 187.0 KB
None
The first 5 rows are:

Close_VIX_to_VVIX_Ratio High_VIX_to_VVIX_Ratio \
Date
2007-01-03 0.14 0.15
2007-01-04 0.13 0.14
2007-01-05 0.13 0.14
2007-01-08 0.13 0.14
2007-01-09 0.13 0.13

Low_VIX_to_VVIX_Ratio Open_VIX_to_VVIX_Ratio
Date
2007-01-03 0.13 0.14
2007-01-04 0.13 0.14
2007-01-05 0.13 0.13
2007-01-08 0.13 0.14
2007-01-09 0.13 0.13

The last 5 rows are:

Close_VIX_to_VVIX_Ratio High_VIX_to_VVIX_Ratio \
Date
2026-01-20 0.17 0.17
2026-01-21 0.16 0.18
2026-01-22 0.16 0.16
2026-01-23 0.16 0.16
2026-01-26 0.16 0.17

Low_VIX_to_VVIX_Ratio Open_VIX_to_VVIX_Ratio
Date
2026-01-20 0.17 0.17
2026-01-21 0.16 0.17
2026-01-22 0.16 0.17
2026-01-23 0.16 0.16
2026-01-26 0.16 0.16

[60]: # Copy this <!-- INSERT_03_VIX_Over_VVIX_DF_Info_HERE --> to index_temp.md
export_track_md_deps(

dep_file=dep_file,
md_filename="03_VIX_Over_VVIX_DF_Info.md",
content=df_info_markdown(vix_over_vvix),

47

output_type="markdown",
)

� Exported and tracked: 03_VIX_Over_VVIX_DF_Info.md

1.10.2 Statistics - VIX/VVIX

[61]: vix_over_vvix_stats = vix_over_vvix.describe()
num_std = [-1, 0, 1, 2, 3, 4, 5]
for num in num_std:

vix_over_vvix_stats.loc[f"mean + {num} std"] = {
'Open_VIX_to_VVIX_Ratio': vix_over_vvix_stats.

↪loc['mean']['Open_VIX_to_VVIX_Ratio'] + num * vix_over_vvix_stats.
↪loc['std']['Open_VIX_to_VVIX_Ratio'],

'High_VIX_to_VVIX_Ratio': vix_over_vvix_stats.
↪loc['mean']['High_VIX_to_VVIX_Ratio'] + num * vix_over_vvix_stats.
↪loc['std']['High_VIX_to_VVIX_Ratio'],

'Low_VIX_to_VVIX_Ratio': vix_over_vvix_stats.
↪loc['mean']['Low_VIX_to_VVIX_Ratio'] + num * vix_over_vvix_stats.
↪loc['std']['Low_VIX_to_VVIX_Ratio'],

'Close_VIX_to_VVIX_Ratio': vix_over_vvix_stats.
↪loc['mean']['Close_VIX_to_VVIX_Ratio'] + num * vix_over_vvix_stats.
↪loc['std']['Close_VIX_to_VVIX_Ratio'],

}

display(vix_over_vvix_stats)

Close_VIX_to_VVIX_Ratio High_VIX_to_VVIX_Ratio \
count 4787.00 4787.00
mean 0.21 0.22
std 0.09 0.09
min 0.10 0.10
25% 0.16 0.16
50% 0.18 0.19
75% 0.24 0.25
max 0.76 0.81
mean + -1 std 0.13 0.13
mean + 0 std 0.21 0.22
mean + 1 std 0.30 0.31
mean + 2 std 0.38 0.40
mean + 3 std 0.47 0.50
mean + 4 std 0.56 0.59
mean + 5 std 0.64 0.68

Low_VIX_to_VVIX_Ratio Open_VIX_to_VVIX_Ratio
count 4787.00 4787.00
mean 0.21 0.21
std 0.08 0.09

48

min 0.10 0.10
25% 0.16 0.16
50% 0.18 0.19
75% 0.23 0.24
max 0.72 0.81
mean + -1 std 0.12 0.13
mean + 0 std 0.21 0.21
mean + 1 std 0.29 0.30
mean + 2 std 0.37 0.39
mean + 3 std 0.45 0.48
mean + 4 std 0.53 0.56
mean + 5 std 0.62 0.65

[62]: # Copy this <!-- INSERT_03_VIX_Over_VVIX_Stats_HERE --> to index_temp.md
export_track_md_deps(

dep_file=dep_file,
md_filename="03_VIX_Over_VVIX_Stats.md",
content=vix_over_vvix_stats.to_markdown(floatfmt=".2f"),
output_type="markdown",

)

� Exported and tracked: 03_VIX_Over_VVIX_Stats.md

[63]: # # Group by year and calculate mean and std for OHLC
vvix_stats_by_year = vvix.groupby(vvix.index.year)[["Open", "High", "Low",␣

↪"Close"]].agg(["mean", "std", "min", "max"])

Flatten the column MultiIndex
vvix_stats_by_year.columns = ['_'.join(col).strip() for col in␣

↪vvix_stats_by_year.columns.values]
vvix_stats_by_year.index.name = "Year"

display(vvix_stats_by_year)

[64]: # # Copy this <!-- INSERT_02_VVIX_Stats_By_Year_HERE --> to index_temp.md
export_track_md_deps(dep_file=dep_file, md_filename="02_VVIX_Stats_By_Year.

↪md", content=vvix_stats_by_year.to_markdown(floatfmt=".2f"))

[65]: # # Group by month and calculate mean and std for OHLC
vvix_stats_by_month = vvix.groupby(vvix.index.month)[["Open", "High", "Low",␣

↪"Close"]].agg(["mean", "std", "min", "max"])

Flatten the column MultiIndex
vvix_stats_by_month.columns = ['_'.join(col).strip() for col in␣

↪vvix_stats_by_month.columns.values]
vvix_stats_by_month.index.name = "Year"

display(vvix_stats_by_month)

49

[66]: # # Copy this <!-- INSERT_02_VVIX_Stats_By_Month_HERE --> to index_temp.md
export_track_md_deps(dep_file=dep_file, md_filename="02_VVIX_Stats_By_Month.

↪md", content=vvix_stats_by_month.to_markdown(floatfmt=".2f"))

1.10.3 Deciles - VIX/VVIX

[67]: vix_over_vvix_deciles = vix_over_vvix.quantile(np.arange(0, 1.1, 0.1))
display(vix_over_vvix_deciles)

Close_VIX_to_VVIX_Ratio High_VIX_to_VVIX_Ratio Low_VIX_to_VVIX_Ratio \
0.00 0.10 0.10 0.10
0.10 0.14 0.15 0.14
0.20 0.16 0.16 0.15
0.30 0.16 0.17 0.16
0.40 0.17 0.18 0.17
0.50 0.18 0.19 0.18
0.60 0.20 0.21 0.19
0.70 0.22 0.23 0.21
0.80 0.26 0.27 0.25
0.90 0.32 0.33 0.31
1.00 0.76 0.81 0.72

Open_VIX_to_VVIX_Ratio
0.00 0.10
0.10 0.14
0.20 0.16
0.30 0.17
0.40 0.17
0.50 0.19
0.60 0.20
0.70 0.22
0.80 0.26
0.90 0.32
1.00 0.81

[68]: # Copy this <!-- INSERT_03_VIX_Over_VVIX_Deciles_HERE --> to index_temp.md
export_track_md_deps(dep_file=dep_file, md_filename="03_VIX_Over_VVIX_Deciles.

↪md", content=vix_over_vvix_deciles.to_markdown(floatfmt=".2f"))

� Exported and tracked: 03_VIX_Over_VVIX_Deciles.md

1.11 Plots - VIX/VVIX
1.11.1 Histogram Distribution - VIX/VVIX

[69]: # Plotting
plt.figure(figsize=(12, 6), facecolor="#F5F5F5")

50

Histogram
plt.hist([vix_over_vvix['High_VIX_to_VVIX_Ratio']],␣

↪label=['High_VIX_to_VVIX_Ratio'], bins=200, edgecolor='black',␣
↪color='steelblue', alpha=1)

plt.hist([vix_over_vvix['Low_VIX_to_VVIX_Ratio']],␣
↪label=['Low_VIX_to_VVIX_Ratio'], bins=200, edgecolor='black',␣
↪color='lightblue', alpha=0.5)

Plot a vertical line at the mean, mean + 1 std, and mean + 2 std
plt.axvline(vix_over_vvix_stats.loc['mean + -1 std']['High_VIX_to_VVIX_Ratio'],␣

↪color='brown', linestyle='dashed', linewidth=1, label=f'High Mean - 1 std:␣
↪{vix_over_vvix_stats.loc['mean + -1 std']['High_VIX_to_VVIX_Ratio']:.2f}')

plt.axvline(vix_over_vvix_stats.loc['mean + -1 std']['Low_VIX_to_VVIX_Ratio'],␣
↪color='brown', linestyle='solid', linewidth=1, label=f'Low Mean - 1 std:␣
↪{vix_over_vvix_stats.loc['mean + -1 std']['Low_VIX_to_VVIX_Ratio']:.2f}')

plt.axvline(vix_over_vvix_stats.loc['mean']['High_VIX_to_VVIX_Ratio'],␣
↪color='red', linestyle='dashed', linewidth=1, label=f'High Mean:␣
↪{vix_over_vvix_stats.loc['mean']['High_VIX_to_VVIX_Ratio']:.2f}')

plt.axvline(vix_over_vvix_stats.loc['mean']['Low_VIX_to_VVIX_Ratio'],␣
↪color='red', linestyle='solid', linewidth=1, label=f'Low Mean:␣
↪{vix_over_vvix_stats.loc['mean']['Low_VIX_to_VVIX_Ratio']:.2f}')

plt.axvline(vix_over_vvix_stats.loc['mean + 1 std']['High_VIX_to_VVIX_Ratio'],␣
↪color='green', linestyle='dashed', linewidth=1, label=f'High Mean + 1 std:␣
↪{vix_over_vvix_stats.loc['mean + 1 std']['High_VIX_to_VVIX_Ratio']:.2f}')

plt.axvline(vix_over_vvix_stats.loc['mean + 1 std']['Low_VIX_to_VVIX_Ratio'],␣
↪color='green', linestyle='solid', linewidth=1, label=f'Low Mean + 1 std:␣
↪{vix_over_vvix_stats.loc['mean + 1 std']['Low_VIX_to_VVIX_Ratio']:.2f}')

plt.axvline(vix_over_vvix_stats.loc['mean + 2 std']['High_VIX_to_VVIX_Ratio'],␣
↪color='orange', linestyle='dashed', linewidth=1, label=f'High Mean + 2 std:␣
↪{vix_over_vvix_stats.loc['mean + 2 std']['High_VIX_to_VVIX_Ratio']:.2f}')

plt.axvline(vix_over_vvix_stats.loc['mean + 2 std']['Low_VIX_to_VVIX_Ratio'],␣
↪color='orange', linestyle='solid', linewidth=1, label=f'Low Mean + 2 std:␣
↪{vix_over_vvix_stats.loc['mean + 2 std']['Low_VIX_to_VVIX_Ratio']:.2f}')

plt.axvline(vix_over_vvix_stats.loc['mean + 3 std']['High_VIX_to_VVIX_Ratio'],␣
↪color='black', linestyle='dashed', linewidth=1, label=f'High Mean + 3 std:␣
↪{vix_over_vvix_stats.loc['mean + 3 std']['High_VIX_to_VVIX_Ratio']:.2f}')

plt.axvline(vix_over_vvix_stats.loc['mean + 3 std']['Low_VIX_to_VVIX_Ratio'],␣
↪color='black', linestyle='solid', linewidth=1, label=f'Low Mean + 3 std:␣
↪{vix_over_vvix_stats.loc['mean + 3 std']['Low_VIX_to_VVIX_Ratio']:.2f}')

51

plt.axvline(vix_over_vvix_stats.loc['mean + 4 std']['High_VIX_to_VVIX_Ratio'],␣
↪color='yellow', linestyle='dashed', linewidth=1, label=f'High Mean + 4 std:␣
↪{vix_over_vvix_stats.loc['mean + 4 std']['High_VIX_to_VVIX_Ratio']:.2f}')

plt.axvline(vix_over_vvix_stats.loc['mean + 4 std']['Low_VIX_to_VVIX_Ratio'],␣
↪color='yellow', linestyle='solid', linewidth=1, label=f'Low Mean + 4 std:␣
↪{vix_over_vvix_stats.loc['mean + 4 std']['Low_VIX_to_VVIX_Ratio']:.2f}')

Set X axis
x_tick_spacing = 0.05 # Specify the interval for y-axis ticks
plt.gca().xaxis.set_major_locator(MultipleLocator(x_tick_spacing))
plt.xlabel("VIX/VVIX", fontsize=10)
plt.xticks(rotation=0, fontsize=8)

Set Y axis
y_tick_spacing = 25 # Specify the interval for y-axis ticks
plt.gca().yaxis.set_major_locator(MultipleLocator(y_tick_spacing))
plt.ylabel("# Of Datapoints", fontsize=10)
plt.yticks(fontsize=8)

Set title, layout, grid, and legend
plt.title("CBOE VIX/VVIX Histogram (200 Bins)", fontsize=12)
plt.tight_layout()
plt.grid(True, linestyle='--', alpha=0.7)
plt.legend(fontsize=9)

Save figure and display plot
plt.savefig("03_Histogram+Mean+SD.png", dpi=300, bbox_inches="tight")
plt.show()

52

1.11.2 Historical Data - VIX/VVIX

[70]: plot_timeseries(
price_df=vix_over_vvix,
plot_start_date=None,
plot_end_date="2016-12-31",
plot_columns=["High_VIX_to_VVIX_Ratio", "Low_VIX_to_VVIX_Ratio"],
title="CBOE VIX/VVIX, 2007 - 2016",
x_label="Date",
x_format="Year",
y_label="VIX/VVIX",
y_format="Decimal",
y_format_decimal_places=2,
y_tick_spacing=0.10,
grid=True,
legend=True,
export_plot=True,
plot_file_name="03_VIX_Over_VVIX_Plot_2007-2016",

)

[71]: plot_timeseries(
price_df=vix_over_vvix,
plot_start_date="2017-01-01",
plot_end_date=None,
plot_columns=["High_VIX_to_VVIX_Ratio", "Low_VIX_to_VVIX_Ratio"],

53

title="CBOE VIX/VVIX, 2017 - Present",
x_label="Date",
x_format="Year",
y_label="VIX/VVIX",
y_format="Decimal",
y_format_decimal_places=2,
y_tick_spacing=0.10,
grid=True,
legend=True,
export_plot=True,
plot_file_name="03_VIX_Over_VVIX_Plot_2017-Present",

)

[72]: plot_timeseries(
price_df=vix_over_vvix,
plot_start_date="2024-01-01",
plot_end_date=None,
plot_columns=["High_VIX_to_VVIX_Ratio", "Low_VIX_to_VVIX_Ratio"],
title="CBOE VIX/VVIX, 2024 - Present",
x_label="Date",
x_format="Month",
y_label="VIX/VVIX",
y_format="Decimal",
y_format_decimal_places=2,
y_tick_spacing=0.05,

54

grid=True,
legend=True,
export_plot=True,
plot_file_name="03_VIX_Over_VVIX_Plot_2024-Present",

)

[73]: plot_timeseries(
price_df=vix_over_vvix,
plot_start_date="2025-01-01",
plot_end_date=None,
plot_columns=["High_VIX_to_VVIX_Ratio", "Low_VIX_to_VVIX_Ratio"],
title="CBOE VIX/VVIX, 2025 - Present",
x_label="Date",
x_format="Month",
y_label="VIX/VVIX",
y_format="Decimal",
y_format_decimal_places=2,
y_tick_spacing=0.05,
grid=True,
legend=True,
export_plot=True,
plot_file_name="03_VIX_Over_VVIX_Plot_2025-Present",

)

55

1.11.3 Stats By Year - VIX/VVIX

[74]: # plot_stats(
stats_df=vvix_stats_by_year,
plot_columns=["Open_mean", "High_mean", "Low_mean", "Close_mean"],
title="VVIX Mean OHLC By Year",
x_label="Year",
x_rotation=45,
x_tick_spacing=1,
y_label="Price",
y_tick_spacing=5,
grid=True,
legend=True,
export_plot=True,
plot_file_name="02_VVIX_Stats_By_Year"
)

1.11.4 Stats By Month - VIX/VVIX

[75]: # plot_stats(
stats_df=vvix_stats_by_month,
plot_columns=["Open_mean", "High_mean", "Low_mean", "Close_mean"],
title="VVIX Mean OHLC By Month",
x_label="Month",
x_rotation=0,

56

x_tick_spacing=1,
y_label="Price",
y_tick_spacing=1,
grid=True,
legend=True,
export_plot=True,
plot_file_name="02_VVIX_Stats_By_Month"
)

1.12 Investigating A Signal
1.12.1 Determining A Spike Level

[76]: # Define the spike multiplier for detecting significant spikes
spike_level = 1.25

=========================
Simple Moving Averages (SMA)
=========================

Calculate 10-period SMA of 'High'
vix['High_SMA_10'] = vix['High'].rolling(window=10).mean()

Shift the 10-period SMA by 1 to compare with current 'High'
vix['High_SMA_10_Shift'] = vix['High_SMA_10'].shift(1)

Calculate the spike level based on shifted SMA and spike multiplier
vix['Spike_Level_SMA'] = vix['High_SMA_10_Shift'] * spike_level

Calculate 20-period SMA of 'High'
vix['High_SMA_20'] = vix['High'].rolling(window=20).mean()

Determine if 'High' exceeds the spike level (indicates a spike)
vix['Spike_SMA'] = vix['High'] >= vix['Spike_Level_SMA']

Calculate 50-period SMA of 'High' for trend analysis
vix['High_SMA_50'] = vix['High'].rolling(window=50).mean()

=========================
Exponential Moving Averages (EMA)
=========================

Calculate 10-period EMA of 'High'
vix['High_EMA_10'] = vix['High'].ewm(span=10, adjust=False).mean()

Shift the 10-period EMA by 1 to compare with current 'High'
vix['High_EMA_10_Shift'] = vix['High_EMA_10'].shift(1)

57

Calculate the spike level based on shifted EMA and spike multiplier
vix['Spike_Level_EMA'] = vix['High_EMA_10_Shift'] * spike_level

Calculate 20-period EMA of 'High'
vix['High_EMA_20'] = vix['High'].ewm(span=20, adjust=False).mean()

Determine if 'High' exceeds the spike level (indicates a spike)
vix['Spike_EMA'] = vix['High'] >= vix['Spike_Level_EMA']

Calculate 50-period EMA of 'High' for trend analysis
vix['High_EMA_50'] = vix['High'].ewm(span=50, adjust=False).mean()

[77]: display(vix)

Close High Low Open High_SMA_10 High_SMA_10_Shift \
Date
1990-01-02 17.24 17.24 17.24 17.24 NaN NaN
1990-01-03 18.19 18.19 18.19 18.19 NaN NaN
1990-01-04 19.22 19.22 19.22 19.22 NaN NaN
1990-01-05 20.11 20.11 20.11 20.11 NaN NaN
1990-01-08 20.26 20.26 20.26 20.26 NaN NaN
… … … … … … …
2026-01-20 20.09 20.99 18.64 19.94 16.74 16.17
2026-01-21 16.90 20.81 16.67 19.31 17.30 16.74
2026-01-22 15.64 16.67 15.27 16.65 17.42 17.30
2026-01-23 16.09 16.21 15.30 15.68 17.46 17.42
2026-01-26 16.15 17.39 15.80 16.90 17.62 17.46

Spike_Level_SMA High_SMA_20 Spike_SMA High_SMA_50 High_EMA_10 \
Date
1990-01-02 NaN NaN False NaN 17.24
1990-01-03 NaN NaN False NaN 17.41
1990-01-04 NaN NaN False NaN 17.74
1990-01-05 NaN NaN False NaN 18.17
1990-01-08 NaN NaN False NaN 18.55
… … … … … …
2026-01-20 20.21 15.88 True 18.32 17.17
2026-01-21 20.93 16.10 False 18.33 17.83
2026-01-22 21.63 16.17 False 18.21 17.62
2026-01-23 21.78 16.26 False 18.15 17.36
2026-01-26 21.82 16.42 False 18.14 17.37

High_EMA_10_Shift Spike_Level_EMA High_EMA_20 Spike_EMA \
Date
1990-01-02 NaN NaN 17.24 False
1990-01-03 17.24 21.55 17.33 False
1990-01-04 17.41 21.77 17.51 False

58

1990-01-05 17.74 22.18 17.76 False
1990-01-08 18.17 22.71 18.00 False
… … … … …
2026-01-20 16.32 20.40 16.80 True
2026-01-21 17.17 21.46 17.18 False
2026-01-22 17.83 22.29 17.13 False
2026-01-23 17.62 22.03 17.04 False
2026-01-26 17.36 21.71 17.08 False

High_EMA_50
Date
1990-01-02 17.24
1990-01-03 17.28
1990-01-04 17.35
1990-01-05 17.46
1990-01-08 17.57
… …
2026-01-20 17.45
2026-01-21 17.59
2026-01-22 17.55
2026-01-23 17.50
2026-01-26 17.49

[9083 rows x 16 columns]

[78]: vix[vix['High'] >= 50]

[78]: Close High Low Open High_SMA_10 High_SMA_10_Shift \
Date
2008-10-06 52.05 58.24 45.12 45.12 42.92 40.52
2008-10-07 53.68 54.19 47.03 52.05 44.73 42.92
2008-10-08 57.53 59.06 51.90 53.68 46.97 44.73
2008-10-09 63.92 64.92 52.54 57.57 49.94 46.97
2008-10-10 69.95 76.94 65.63 65.85 53.99 49.94
… … … … … … …
2024-08-05 38.57 65.73 23.39 23.39 23.84 18.95
2025-04-07 46.98 60.13 38.58 60.13 28.60 24.51
2025-04-08 52.33 57.52 36.48 44.04 32.58 28.60
2025-04-09 33.62 57.96 31.90 50.98 36.47 32.58
2025-04-10 40.72 54.87 34.44 34.44 40.03 36.47

Spike_Level_SMA High_SMA_20 Spike_SMA High_SMA_50 High_EMA_10 \
Date
2008-10-06 50.65 37.24 True 28.17 44.33
2008-10-07 53.65 38.66 True 28.76 46.12
2008-10-08 55.91 40.34 True 29.46 48.47
2008-10-09 58.71 42.27 True 30.31 51.46

59

2008-10-10 62.42 44.79 True 31.39 56.10
… … … … … …
2024-08-05 23.69 19.11 True 15.66 28.04
2025-04-07 30.63 26.10 True 22.35 33.61
2025-04-08 35.76 27.50 True 23.05 37.96
2025-04-09 40.72 29.05 True 23.84 41.60
2025-04-10 45.59 30.49 True 24.58 44.01

High_EMA_10_Shift Spike_Level_EMA High_EMA_20 Spike_EMA \
Date
2008-10-06 41.24 51.55 38.82 True
2008-10-07 44.33 55.41 40.29 False
2008-10-08 46.12 57.65 42.07 True
2008-10-09 48.47 60.59 44.25 True
2008-10-10 51.46 64.33 47.36 True
… … … … …
2024-08-05 19.66 24.58 22.15 True
2025-04-07 27.72 34.65 28.48 True
2025-04-08 33.61 42.01 31.25 True
2025-04-09 37.96 47.45 33.79 True
2025-04-10 41.60 51.99 35.80 True

High_EMA_50
Date
2008-10-06 31.65
2008-10-07 32.53
2008-10-08 33.57
2008-10-09 34.80
2008-10-10 36.46
… …
2024-08-05 17.62
2025-04-07 23.95
2025-04-08 25.27
2025-04-09 26.55
2025-04-10 27.66

[97 rows x 16 columns]

1.12.2 Spike Counts (Signals) By Year

[79]: # Ensure the index is a DatetimeIndex
vix.index = pd.to_datetime(vix.index)

Create a new column for the year extracted from the date index
vix['Year'] = vix.index.year

60

Group by year and the "Spike_SMA" and "Spike_EMA" columns, then count␣
↪occurrences

spike_count_SMA = vix.groupby(['Year', 'Spike_SMA']).size().
↪unstack(fill_value=0)

display(spike_count_SMA)

Spike_SMA False True
Year
1990 248 5
1991 249 4
1992 250 4
1993 251 2
1994 243 9
1995 252 0
1996 248 6
1997 247 6
1998 243 9
1999 250 2
2000 248 4
2001 240 8
2002 248 4
2003 251 1
2004 250 2
2005 250 2
2006 242 9
2007 239 12
2008 238 15
2009 249 3
2010 239 13
2011 240 12
2012 248 2
2013 249 3
2014 235 17
2015 240 12
2016 234 18
2017 244 7
2018 228 23
2019 241 11
2020 224 29
2021 235 17
2022 239 12
2023 246 4
2024 237 15
2025 231 19
2026 15 1

61

[80]: # Copy this <!-- INSERT_08_Spike_Counts_HERE --> to index_temp.md
export_track_md_deps(dep_file=dep_file, md_filename="08_Spike_Counts.md",␣

↪content=spike_count_SMA.to_markdown())

� Exported and tracked: 08_Spike_Counts.md

[81]: # Ensure the index is a DatetimeIndex
vix.index = pd.to_datetime(vix.index)

Create a new column for the year extracted from the date index
vix['Year'] = vix.index.year

Group by year and the "Spike_SMA" and "Spike_EMA" columns, then count␣
↪occurrences

spike_count_EMA = vix.groupby(['Year', 'Spike_EMA']).size().
↪unstack(fill_value=0)

display(spike_count_EMA)

Spike_EMA False True
Year
1990 247 6
1991 251 2
1992 253 1
1993 251 2
1994 247 5
1995 252 0
1996 252 2
1997 250 3
1998 246 6
1999 250 2
2000 250 2
2001 241 7
2002 250 2
2003 251 1
2004 251 1
2005 250 2
2006 248 3
2007 242 9
2008 240 13
2009 251 1
2010 243 9
2011 242 10
2012 250 0
2013 250 2
2014 236 16
2015 243 9
2016 238 14

62

2017 244 7
2018 230 21
2019 242 10
2020 228 25
2021 239 13
2022 244 7
2023 248 2
2024 244 8
2025 236 14
2026 15 1

[82]: # Plotting
plt.figure(figsize=(12, 6), facecolor="#F5F5F5")

Bar positions
x = np.arange(len(spike_count_SMA[True].index))
width = 0.35

Plot SMA bars
plt.bar(x - width / 2, spike_count_SMA[True].values, width, color="steelblue",␣

↪label="Spike Counts Using SMA")

Plot EMA bars
plt.bar(x + width / 2, spike_count_EMA[True].values, width,␣

↪color="forestgreen", label="Spike Counts Using EMA")

Set X axis
x_tick_spacing = 5 # Specify the interval for y-axis ticks
plt.gca().xaxis.set_major_locator(MultipleLocator(x_tick_spacing))
plt.xlabel("Year", fontsize=10)
plt.xticks(x, spike_count_SMA[True].index, rotation=45, fontsize=8)
plt.xlim(x[0] - 2 * width, x[-1] + 2 * width)

Set Y axis
y_tick_spacing = 2 # Specify the interval for y-axis ticks
plt.gca().yaxis.set_major_locator(MultipleLocator(y_tick_spacing))
plt.ylabel("Count", fontsize=10)
plt.yticks(fontsize=8)

Set title, layout, grid, and legend
plt.title("Yearly Totals Of Spike Counts", fontsize=12)
plt.tight_layout()
plt.grid(True, linestyle='--', alpha=0.7)
plt.legend(fontsize=9)

Save figure and display plot
plt.savefig("08_Spike_Counts.png", dpi=300, bbox_inches="tight")

63

plt.show()

1.12.3 Spike Counts (Signals) Plots By Year

[83]: def vix_plot(start_year, end_year):
Start and end dates
start_date = start_year + '-01-01'
end_date = end_year + '-12-31'

Create temporary dataframe for the specified date range
vix_temp = vix[(vix.index >= start_date) & (vix.index <= end_date)]

Plotting
plt.figure(figsize=(12, 6), facecolor="#F5F5F5")

Plot data
plt.plot(vix_temp.index, vix_temp['High'], label='High', linestyle='-',␣

↪color='steelblue', linewidth=1)
plt.plot(vix_temp.index, vix_temp['Low'], label='Low', linestyle='-',␣

↪color='brown', linewidth=1)
plt.plot(vix_temp.index, vix_temp['High_SMA_10'], label='10 Day High SMA',␣

↪linestyle='-', color='red', linewidth=1)
plt.plot(vix_temp.index, vix_temp['High_SMA_20'], label='20 Day High SMA',␣

↪linestyle='-', color='orange', linewidth=1)
plt.plot(vix_temp.index, vix_temp['High_SMA_50'], label='50 Day High SMA',␣

↪linestyle='-', color='green', linewidth=1)

64

plt.scatter(vix_temp[vix_temp['Spike_SMA'] == True].index,␣
↪vix_temp[vix_temp['Spike_SMA'] == True]['High'], label='Spike (High > 1.25 *␣
↪10 Day High SMA)', linestyle='-', color='black', s=20)

Set X axis
plt.gca().xaxis.set_major_locator(mdates.MonthLocator())
plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%b %Y'))
plt.xlabel("Date", fontsize=10)
plt.xticks(rotation=45, fontsize=8)

Set Y axis
y_tick_spacing = 5 # Specify the interval for y-axis ticks
plt.gca().yaxis.set_major_locator(MultipleLocator(y_tick_spacing))
plt.ylabel("VIX", fontsize=10)
plt.yticks(fontsize=8)

Set title, layout, grid, and legend
plt.title(f"CBOE Volatility Index (VIX), {start_year} - {end_year}",␣

↪fontsize=12)
plt.tight_layout()
plt.grid(True, linestyle='--', alpha=0.7)
plt.legend(fontsize=9)

Save figure and display plot
plt.savefig(f"09_VIX_SMA_Spike_{start_year}_{end_year}.png", dpi=300,␣

↪bbox_inches="tight")
plt.show()

Yearly Plots
[84]: for year in range(1990, 2026):

vix_plot(str(year), str(year))

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

1.12.4 Spike Counts (Signals) Plots By Decade
1990 - 1994

[85]: vix_plot('1990', '1994')

83

1995 - 1999
[86]: vix_plot('1995', '1999')

2000 - 2004
[87]: vix_plot('2000', '2004')

84

2005 - 2009
[88]: vix_plot('2005', '2009')

2010 - 2014
[89]: vix_plot('2010', '2014')

85

2015 - 2019
[90]: vix_plot('2015', '2019')

2020 - 2024
[91]: vix_plot('2020', '2024')

86

2025 - Present
[92]: vix_plot('2025', '2029')

1.13 Trading History
1.13.1 Trades Executed

[93]: # from schwab_order_history import schwab_order_history

87

[94]: # from datetime import datetime
import pandas as pd

Define your date ranges
range_2024 = {
"from": "2024-01-01T00:00:00.000Z",
"to": "2024-12-31T23:59:59.000Z",
}

range_2025 = {
"from": "2025-01-01T00:00:00.000Z",
"to": datetime.utcnow().strftime("%Y-%m-%dT%H:%M:%S.000Z"),
}

Pull both sets of orders
df_2024 = schwab_order_history(
max_results=1000, # or whatever large number you want
from_entered_time=range_2024["from"],
to_entered_time=range_2024["to"],
account_id=None, # or pass your specific encrypted account ID
)

df_2025 = schwab_order_history(
max_results=1000,
from_entered_time=range_2025["from"],
to_entered_time=range_2025["to"],
account_id=None,
)

Combine the two dataframes
df_all = pd.concat([df_2024, df_2025], ignore_index=True)

[95]: # df_2024

[96]: # # Filter for symbols that start with "VIX"
df_vix = df_all[df_all["symbol"].str.startswith("VIX")].copy()
df_vix = df_vix.sort_values(by=['symbol', 'execution_time'], ascending=[True,␣

↪True])

[97]: # df_vix

1.13.2 Trades Executed

[98]: # Import CSV file of VIX transactions from IRA and Brokerage accounts
vix_transactions_IRA = pd.read_csv(DATA_MANUAL_DIR / "VIX_Transactions_IRA.csv")
vix_transactions_Brokerage = pd.read_excel(DATA_MANUAL_DIR /␣

↪"VIX_Transactions_Brokerage.xlsx", sheet_name="VIX_Transactions_Brokerage")

88

[99]: # Combine the two DataFrames
vix_transactions = pd.concat([vix_transactions_IRA,␣

↪vix_transactions_Brokerage], ignore_index=True)

Drop unnecessary columns
vix_transactions.drop(columns = {'Description'}, inplace=True)

Convert Amount, Price, and Fees & Comm columns to numeric
vix_transactions['Amount'] = vix_transactions['Amount'].replace({'\$': '', ',':␣

↪''}, regex=True).astype(float)
vix_transactions['Price'] = vix_transactions['Price'].replace({'\$': '', ',':␣

↪''}, regex=True).astype(float)
vix_transactions['Fees & Comm'] = vix_transactions['Fees & Comm'].replace({'\$':

↪ '', ',': ''}, regex=True).astype(float)

Convert Amount column to absolute values
vix_transactions['Amount'] = abs(vix_transactions['Amount'])

Extract date for option expiration with regex (MM/DD/YYYY)
vix_transactions["Exp_Date"] = vix_transactions["Symbol"].str.extract(r'(\d{2}/

↪\d{2}/\d{4})')

Extract date for option strike price with regex and convert to float
vix_transactions["Strike_Price"] = vix_transactions["Symbol"].str.

↪extract(r'(\d{2}\.\d{2})').astype(float)

Convert expiration date and trade date to datetime
vix_transactions["Exp_Date"] = pd.to_datetime(vix_transactions["Exp_Date"],␣

↪format="%m/%d/%Y")
vix_transactions['Date'] = pd.to_datetime(vix_transactions['Date'])

Rename date to trade date
vix_transactions.rename(columns={'Date': 'Trade_Date'}, inplace=True)

Sort by Exp_Date, then Strike_Price, then Trade_Date
vix_transactions.sort_values(by=['Exp_Date', 'Strike_Price', 'Trade_Date'],␣

↪ascending=[True, True, True], inplace=True)

Reset index
vix_transactions.reset_index(drop=True, inplace=True)
vix_transactions

[99]: Trade_Date Action Symbol Quantity Price \
0 2024-08-05 Buy to Open VIX 09/18/2024 34.00 P 1 10.95
1 2024-08-21 Sell to Close VIX 09/18/2024 34.00 P 1 17.95
2 2024-08-05 Buy to Open VIX 10/16/2024 40.00 P 1 16.35

89

3 2024-09-18 Sell to Close VIX 10/16/2024 40.00 P 1 21.54
4 2024-08-07 Buy to Open VIX 11/20/2024 25.00 P 2 5.90
.. … … … … …
59 2025-10-09 Sell to Close VIX 11/19/2025 20.00 C 10 2.08
60 2025-08-12 Buy to Open VIX 11/19/2025 21.00 C 10 3.00
61 2025-10-08 Sell to Close VIX 11/19/2025 21.00 C 10 1.83
62 2025-09-11 Buy to Open VIX 12/17/2025 17.00 C 10 3.90
63 2025-10-10 Sell to Close VIX 12/17/2025 17.00 C 10 4.60

Fees & Comm Amount Approx_VIX_Level Comments Exp_Date Strike_Price
0 1.08 1096.08 34.33 NaN 2024-09-18 34.00
1 1.08 1793.92 16.50 NaN 2024-09-18 34.00
2 1.08 1636.08 42.71 NaN 2024-10-16 40.00
3 1.08 2152.92 18.85 NaN 2024-10-16 40.00
4 2.16 1182.16 27.11 NaN 2024-11-20 25.00
.. … … … … … …
59 10.81 2069.19 NaN NaN 2025-11-19 20.00
60 10.81 3010.81 15.17 NaN 2025-11-19 21.00
61 9.31 1820.69 NaN NaN 2025-11-19 21.00
62 10.81 3910.81 NaN NaN 2025-12-17 17.00
63 10.81 4589.19 NaN NaN 2025-12-17 17.00

[64 rows x 11 columns]

[100]: vix_transactions_no_exp = vix_transactions.drop(columns=['Exp_Date',␣
↪'Strike_Price'])

vix_transactions_no_exp

[100]: Trade_Date Action Symbol Quantity Price \
0 2024-08-05 Buy to Open VIX 09/18/2024 34.00 P 1 10.95
1 2024-08-21 Sell to Close VIX 09/18/2024 34.00 P 1 17.95
2 2024-08-05 Buy to Open VIX 10/16/2024 40.00 P 1 16.35
3 2024-09-18 Sell to Close VIX 10/16/2024 40.00 P 1 21.54
4 2024-08-07 Buy to Open VIX 11/20/2024 25.00 P 2 5.90
.. … … … … …
59 2025-10-09 Sell to Close VIX 11/19/2025 20.00 C 10 2.08
60 2025-08-12 Buy to Open VIX 11/19/2025 21.00 C 10 3.00
61 2025-10-08 Sell to Close VIX 11/19/2025 21.00 C 10 1.83
62 2025-09-11 Buy to Open VIX 12/17/2025 17.00 C 10 3.90
63 2025-10-10 Sell to Close VIX 12/17/2025 17.00 C 10 4.60

Fees & Comm Amount Approx_VIX_Level Comments
0 1.08 1096.08 34.33 NaN
1 1.08 1793.92 16.50 NaN
2 1.08 1636.08 42.71 NaN
3 1.08 2152.92 18.85 NaN
4 2.16 1182.16 27.11 NaN

90

.. … … … …
59 10.81 2069.19 NaN NaN
60 10.81 3010.81 15.17 NaN
61 9.31 1820.69 NaN NaN
62 10.81 3910.81 NaN NaN
63 10.81 4589.19 NaN NaN

[64 rows x 9 columns]

[101]: # Copy this <!-- INSERT_10_Trades_Executed_HERE --> to index_temp.md
export_track_md_deps(dep_file=dep_file, md_filename="10_Trades_Executed.md",␣

↪content=vix_transactions_no_exp.to_markdown(index=False, floatfmt=".2f"))

� Exported and tracked: 10_Trades_Executed.md

Volatility In August 2024
[102]: # Variables to be modifed

esd = "2024-09-18" # Expiration Start Date
eed = "2024-12-18" # Expiration End Date
tsd = "2024-08-05" # Trade Start Date
ted = "2024-11-27" # Trade End Date
index_number = "11"
x_tick_spacing = 10
y_tick_spacing = 5

##
Do not modify the code below this line
##

trades, closed_pos, open_pos, per_pnl, pnl, tot_opened_pos_mkt_val,␣
↪tot_closed_pos_mkt_val = calc_vix_trade_pnl(

transaction_df=vix_transactions,
exp_start_date=esd,
exp_end_date=eed,
trade_start_date=tsd,
trade_end_date=ted,

)

Convert to datetime objects
tsd_dt = datetime.strptime(tsd, "%Y-%m-%d")
ted_dt = datetime.strptime(ted, "%Y-%m-%d")

Adjust the plot start and end dates
plot_start = tsd_dt - timedelta(days=10)
plot_end = ted_dt + timedelta(days=10)

plot_vix_with_trades(

91

vix_price_df=vix,
trades_df=trades,
plot_start_date=plot_start.strftime("%Y-%m-%d"),
plot_end_date=plot_end.strftime("%Y-%m-%d"),
x_tick_spacing=x_tick_spacing,
y_tick_spacing=y_tick_spacing,
index_number=index_number,
export_plot=True,

)

print(f"<!-- INSERT_{index_number}_Closed_Positions_HERE -->")
print(f"<!-- INSERT_{index_number}_Open_Positions_HERE -->")
print(f"<!-- INSERT_{index_number}_Total_Opened_Position_Market_Value_HERE -->")
print(f"<!-- INSERT_{index_number}_Total_Closed_Position_Market_Value_HERE -->")
print(f"<!-- INSERT_{index_number}_PnL_HERE -->")
print(f"<!-- INSERT_{index_number}_Percent_PnL_HERE -->")
export_track_md_deps(dep_file=dep_file,␣

↪md_filename=f"{index_number}_Closed_Positions.md", content=closed_pos.
↪to_markdown(index=False, floatfmt=".2f"))

export_track_md_deps(dep_file=dep_file,␣
↪md_filename=f"{index_number}_Open_Positions.md", content=open_pos.
↪to_markdown(index=False, floatfmt=".2f"))

export_track_md_deps(dep_file=dep_file,␣
↪md_filename=f"{index_number}_Total_Opened_Position_Market_Value.txt",␣
↪content=tot_opened_pos_mkt_val)

export_track_md_deps(dep_file=dep_file,␣
↪md_filename=f"{index_number}_Total_Closed_Position_Market_Value.txt",␣
↪content=tot_closed_pos_mkt_val)

export_track_md_deps(dep_file=dep_file, md_filename=f"{index_number}_PnL.txt",␣
↪content=pnl)

export_track_md_deps(dep_file=dep_file,␣
↪md_filename=f"{index_number}_Percent_PnL.txt", content=per_pnl)

92

<!-- INSERT_11_Closed_Positions_HERE -->
<!-- INSERT_11_Open_Positions_HERE -->
<!-- INSERT_11_Total_Opened_Position_Market_Value_HERE -->
<!-- INSERT_11_Total_Closed_Position_Market_Value_HERE -->
<!-- INSERT_11_PnL_HERE -->
<!-- INSERT_11_Percent_PnL_HERE -->
� Exported and tracked: 11_Closed_Positions.md
� Exported and tracked: 11_Open_Positions.md
� Exported and tracked: 11_Total_Opened_Position_Market_Value.txt
� Exported and tracked: 11_Total_Closed_Position_Market_Value.txt
� Exported and tracked: 11_PnL.txt
� Exported and tracked: 11_Percent_PnL.txt

Volatility In March 2025
[103]: # Variables to be modifed

esd = "2025-04-16" # Expiration Start Date
eed = "2025-04-16" # Expiration End Date
tsd = "2025-03-04" # Trade Start Date
ted = "2025-03-24" # Trade End Date
index_number = "12"
x_tick_spacing = 2
y_tick_spacing = 2

##
Do not modify the code below this line
##

trades, closed_pos, open_pos, per_pnl, pnl, tot_opened_pos_mkt_val,␣
↪tot_closed_pos_mkt_val = calc_vix_trade_pnl(

93

transaction_df=vix_transactions,
exp_start_date=esd,
exp_end_date=eed,
trade_start_date=tsd,
trade_end_date=ted,

)

Convert to datetime objects
tsd_dt = datetime.strptime(tsd, "%Y-%m-%d")
ted_dt = datetime.strptime(ted, "%Y-%m-%d")

Adjust the plot start and end dates
plot_start = tsd_dt - timedelta(days=10)
plot_end = ted_dt + timedelta(days=10)

plot_vix_with_trades(
vix_price_df=vix,
trades_df=trades,
plot_start_date=plot_start.strftime("%Y-%m-%d"),
plot_end_date=plot_end.strftime("%Y-%m-%d"),
x_tick_spacing=x_tick_spacing,
y_tick_spacing=y_tick_spacing,
index_number=index_number,
export_plot=True,

)

print(f"<!-- INSERT_{index_number}_Closed_Positions_HERE -->")
print(f"<!-- INSERT_{index_number}_Open_Positions_HERE -->")
print(f"<!-- INSERT_{index_number}_Total_Opened_Position_Market_Value_HERE -->")
print(f"<!-- INSERT_{index_number}_Total_Closed_Position_Market_Value_HERE -->")
print(f"<!-- INSERT_{index_number}_PnL_HERE -->")
print(f"<!-- INSERT_{index_number}_Percent_PnL_HERE -->")
export_track_md_deps(dep_file=dep_file,␣

↪md_filename=f"{index_number}_Closed_Positions.md", content=closed_pos.
↪to_markdown(index=False, floatfmt=".2f"))

export_track_md_deps(dep_file=dep_file,␣
↪md_filename=f"{index_number}_Open_Positions.md", content=open_pos.
↪to_markdown(index=False, floatfmt=".2f"))

export_track_md_deps(dep_file=dep_file,␣
↪md_filename=f"{index_number}_Total_Opened_Position_Market_Value.txt",␣
↪content=tot_opened_pos_mkt_val)

export_track_md_deps(dep_file=dep_file,␣
↪md_filename=f"{index_number}_Total_Closed_Position_Market_Value.txt",␣
↪content=tot_closed_pos_mkt_val)

export_track_md_deps(dep_file=dep_file, md_filename=f"{index_number}_PnL.txt",␣
↪content=pnl)

94

export_track_md_deps(dep_file=dep_file,␣
↪md_filename=f"{index_number}_Percent_PnL.txt", content=per_pnl)

<!-- INSERT_12_Closed_Positions_HERE -->
<!-- INSERT_12_Open_Positions_HERE -->
<!-- INSERT_12_Total_Opened_Position_Market_Value_HERE -->
<!-- INSERT_12_Total_Closed_Position_Market_Value_HERE -->
<!-- INSERT_12_PnL_HERE -->
<!-- INSERT_12_Percent_PnL_HERE -->
� Exported and tracked: 12_Closed_Positions.md
� Exported and tracked: 12_Open_Positions.md
� Exported and tracked: 12_Total_Opened_Position_Market_Value.txt
� Exported and tracked: 12_Total_Closed_Position_Market_Value.txt
� Exported and tracked: 12_PnL.txt
� Exported and tracked: 12_Percent_PnL.txt

Volatility In April 2025
[104]: # Variables to be modifed

esd = "2025-05-21" # Expiration Start Date
eed = "2025-08-20" # Expiration End Date
tsd = "2025-03-10" # Trade Start Date
ted = "2025-05-13" # Trade End Date
index_number = "13"
x_tick_spacing = 5
y_tick_spacing = 5

##
Do not modify the code below this line

95

##

trades, closed_pos, open_pos, per_pnl, pnl, tot_opened_pos_mkt_val,␣
↪tot_closed_pos_mkt_val = calc_vix_trade_pnl(

transaction_df=vix_transactions,
exp_start_date=esd,
exp_end_date=eed,
trade_start_date=tsd,
trade_end_date=ted,

)

Convert to datetime objects
tsd_dt = datetime.strptime(tsd, "%Y-%m-%d")
ted_dt = datetime.strptime(ted, "%Y-%m-%d")

Adjust the plot start and end dates
plot_start = tsd_dt - timedelta(days=10)
plot_end = ted_dt + timedelta(days=10)

plot_vix_with_trades(
vix_price_df=vix,
trades_df=trades,
plot_start_date=plot_start.strftime("%Y-%m-%d"),
plot_end_date=plot_end.strftime("%Y-%m-%d"),
x_tick_spacing=x_tick_spacing,
y_tick_spacing=y_tick_spacing,
index_number=index_number,
export_plot=True,

)

print(f"<!-- INSERT_{index_number}_Closed_Positions_HERE -->")
print(f"<!-- INSERT_{index_number}_Open_Positions_HERE -->")
print(f"<!-- INSERT_{index_number}_Total_Opened_Position_Market_Value_HERE -->")
print(f"<!-- INSERT_{index_number}_Total_Closed_Position_Market_Value_HERE -->")
print(f"<!-- INSERT_{index_number}_PnL_HERE -->")
print(f"<!-- INSERT_{index_number}_Percent_PnL_HERE -->")
export_track_md_deps(dep_file=dep_file,␣

↪md_filename=f"{index_number}_Closed_Positions.md", content=closed_pos.
↪to_markdown(index=False, floatfmt=".2f"))

export_track_md_deps(dep_file=dep_file,␣
↪md_filename=f"{index_number}_Open_Positions.md", content=open_pos.
↪to_markdown(index=False, floatfmt=".2f"))

export_track_md_deps(dep_file=dep_file,␣
↪md_filename=f"{index_number}_Total_Opened_Position_Market_Value.txt",␣
↪content=tot_opened_pos_mkt_val)

96

export_track_md_deps(dep_file=dep_file,␣
↪md_filename=f"{index_number}_Total_Closed_Position_Market_Value.txt",␣
↪content=tot_closed_pos_mkt_val)

export_track_md_deps(dep_file=dep_file, md_filename=f"{index_number}_PnL.txt",␣
↪content=pnl)

export_track_md_deps(dep_file=dep_file,␣
↪md_filename=f"{index_number}_Percent_PnL.txt", content=per_pnl)

<!-- INSERT_13_Closed_Positions_HERE -->
<!-- INSERT_13_Open_Positions_HERE -->
<!-- INSERT_13_Total_Opened_Position_Market_Value_HERE -->
<!-- INSERT_13_Total_Closed_Position_Market_Value_HERE -->
<!-- INSERT_13_PnL_HERE -->
<!-- INSERT_13_Percent_PnL_HERE -->
� Exported and tracked: 13_Closed_Positions.md
� Exported and tracked: 13_Open_Positions.md
� Exported and tracked: 13_Total_Opened_Position_Market_Value.txt
� Exported and tracked: 13_Total_Closed_Position_Market_Value.txt
� Exported and tracked: 13_PnL.txt
� Exported and tracked: 13_Percent_PnL.txt

Low Volatility In June, July, August, September, October, November 2025
[105]: # Variables to be modifed

esd = "2025-09-17" # Expiration Start Date
eed = "2025-12-31" # Expiration End Date
tsd = "2025-06-26" # Trade Start Date
ted = "2025-12-31" # Trade End Date
index_number = "14"

97

x_tick_spacing = 5
y_tick_spacing = 1

##
Do not modify the code below this line
##

trades, closed_pos, open_pos, per_pnl, pnl, tot_opened_pos_mkt_val,␣
↪tot_closed_pos_mkt_val = calc_vix_trade_pnl(

transaction_df=vix_transactions,
exp_start_date=esd,
exp_end_date=eed,
trade_start_date=tsd,
trade_end_date=ted,

)

Convert to datetime objects
tsd_dt = datetime.strptime(tsd, "%Y-%m-%d")
ted_dt = datetime.strptime(ted, "%Y-%m-%d")

Adjust the plot start and end dates
plot_start = tsd_dt - timedelta(days=10)
plot_end = ted_dt + timedelta(days=10)

plot_vix_with_trades(
vix_price_df=vix,
trades_df=trades,
plot_start_date=plot_start.strftime("%Y-%m-%d"),
plot_end_date=plot_end.strftime("%Y-%m-%d"),
x_tick_spacing=x_tick_spacing,
y_tick_spacing=y_tick_spacing,
index_number=index_number,
export_plot=True,

)

print(f"<!-- INSERT_{index_number}_Closed_Positions_HERE -->")
print(f"<!-- INSERT_{index_number}_Open_Positions_HERE -->")
print(f"<!-- INSERT_{index_number}_Total_Opened_Position_Market_Value_HERE -->")
print(f"<!-- INSERT_{index_number}_Total_Closed_Position_Market_Value_HERE -->")
print(f"<!-- INSERT_{index_number}_PnL_HERE -->")
print(f"<!-- INSERT_{index_number}_Percent_PnL_HERE -->")
export_track_md_deps(dep_file=dep_file,␣

↪md_filename=f"{index_number}_Closed_Positions.md", content=closed_pos.
↪to_markdown(index=False, floatfmt=".2f"))

export_track_md_deps(dep_file=dep_file,␣
↪md_filename=f"{index_number}_Open_Positions.md", content=open_pos.
↪to_markdown(index=False, floatfmt=".2f"))

98

export_track_md_deps(dep_file=dep_file,␣
↪md_filename=f"{index_number}_Total_Opened_Position_Market_Value.txt",␣
↪content=tot_opened_pos_mkt_val)

export_track_md_deps(dep_file=dep_file,␣
↪md_filename=f"{index_number}_Total_Closed_Position_Market_Value.txt",␣
↪content=tot_closed_pos_mkt_val)

export_track_md_deps(dep_file=dep_file, md_filename=f"{index_number}_PnL.txt",␣
↪content=pnl)

export_track_md_deps(dep_file=dep_file,␣
↪md_filename=f"{index_number}_Percent_PnL.txt", content=per_pnl)

<!-- INSERT_14_Closed_Positions_HERE -->
<!-- INSERT_14_Open_Positions_HERE -->
<!-- INSERT_14_Total_Opened_Position_Market_Value_HERE -->
<!-- INSERT_14_Total_Closed_Position_Market_Value_HERE -->
<!-- INSERT_14_PnL_HERE -->
<!-- INSERT_14_Percent_PnL_HERE -->
� Exported and tracked: 14_Closed_Positions.md
� Exported and tracked: 14_Open_Positions.md
� Exported and tracked: 14_Total_Opened_Position_Market_Value.txt
� Exported and tracked: 14_Total_Closed_Position_Market_Value.txt
� Exported and tracked: 14_PnL.txt
� Exported and tracked: 14_Percent_PnL.txt

Complete Trade History
[106]: # Variables to be modifed

esd = None
eed = None

99

tsd = None
ted = None
index_number = "99"

##
Do not modify the code below this line
##

trades, closed_pos, open_pos, per_pnl, pnl, tot_opened_pos_mkt_val,␣
↪tot_closed_pos_mkt_val = calc_vix_trade_pnl(

transaction_df=vix_transactions,
exp_start_date=esd,
exp_end_date=eed,
trade_start_date=tsd,
trade_end_date=ted,

)

print(f"<!-- INSERT_{index_number}_Closed_Positions_HERE -->")
print(f"<!-- INSERT_{index_number}_Open_Positions_HERE -->")
print(f"<!-- INSERT_{index_number}_Total_Opened_Position_Market_Value_HERE -->")
print(f"<!-- INSERT_{index_number}_Total_Closed_Position_Market_Value_HERE -->")
print(f"<!-- INSERT_{index_number}_PnL_HERE -->")
print(f"<!-- INSERT_{index_number}_Percent_PnL_HERE -->")
export_track_md_deps(dep_file=dep_file,␣

↪md_filename=f"{index_number}_Closed_Positions.md", content=closed_pos.
↪to_markdown(index=False, floatfmt=".2f"))

export_track_md_deps(dep_file=dep_file,␣
↪md_filename=f"{index_number}_Open_Positions.md", content=open_pos.
↪to_markdown(index=False, floatfmt=".2f"))

export_track_md_deps(dep_file=dep_file,␣
↪md_filename=f"{index_number}_Total_Opened_Position_Market_Value.txt",␣
↪content=tot_opened_pos_mkt_val)

export_track_md_deps(dep_file=dep_file,␣
↪md_filename=f"{index_number}_Total_Closed_Position_Market_Value.txt",␣
↪content=tot_closed_pos_mkt_val)

export_track_md_deps(dep_file=dep_file, md_filename=f"{index_number}_PnL.txt",␣
↪content=pnl)

export_track_md_deps(dep_file=dep_file,␣
↪md_filename=f"{index_number}_Percent_PnL.txt", content=per_pnl)

<!-- INSERT_99_Closed_Positions_HERE -->
<!-- INSERT_99_Open_Positions_HERE -->
<!-- INSERT_99_Total_Opened_Position_Market_Value_HERE -->
<!-- INSERT_99_Total_Closed_Position_Market_Value_HERE -->
<!-- INSERT_99_PnL_HERE -->
<!-- INSERT_99_Percent_PnL_HERE -->
� Exported and tracked: 99_Closed_Positions.md

100

� Exported and tracked: 99_Open_Positions.md
� Exported and tracked: 99_Total_Opened_Position_Market_Value.txt
� Exported and tracked: 99_Total_Closed_Position_Market_Value.txt
� Exported and tracked: 99_PnL.txt
� Exported and tracked: 99_Percent_PnL.txt

[]:

101

	Investigating A VIX Trading Signal
	Python Imports
	Add Directories To Path
	Track Index Dependencies
	Python Functions
	Data Overview - VIX
	Acquire CBOE Volatility Index (VIX) Data
	Load Data - VIX
	DataFrame Info - VIX
	Statistics - VIX
	Deciles - VIX

	Time Between Levels
	Plots - VIX
	Histogram Distribution - VIX
	Historical Data - VIX
	Stats By Year - VIX
	Stats By Month - VIX

	Data Overview - VVIX
	Acquire CBOE VVIX Data
	Load Data - VVIX
	DataFrame Info - VVIX
	Statistics - VVIX
	Deciles - VVIX

	Plots - VVIX
	Histogram Distribution - VVIX
	Historical Data - VVIX
	Stats By Year - VVIX
	Stats By Month - VVIX

	Data Overview - VIX/VVIX
	Merge VIX & VVIX Data
	Statistics - VIX/VVIX
	Deciles - VIX/VVIX

	Plots - VIX/VVIX
	Histogram Distribution - VIX/VVIX
	Historical Data - VIX/VVIX
	Stats By Year - VIX/VVIX
	Stats By Month - VIX/VVIX

	Investigating A Signal
	Determining A Spike Level
	Spike Counts (Signals) By Year
	Spike Counts (Signals) Plots By Year
	Spike Counts (Signals) Plots By Decade

	Trading History
	Trades Executed
	Trades Executed

