investigating-a-vix-trading-signal-part-2-finding-a-signal
January 27, 2026

1 Investigating A VIX Trading Signal

1.1 Python Imports

[1]: # Standard Library
import datetime
import io
import os
import random
import sys
import warnings

from datetime import datetime, timedelta
from pathlib import Path

Data Handling
import numpy as np
import pandas as pd

Data Visualization

import matplotlib.dates as mdates

import matplotlib.pyplot as plt

import matplotlib.ticker as mtick

import seaborn as sns

from matplotlib.ticker import FormatStrFormatter, FuncFormatter, MultipleLocator

Data Sources
import yfinance as yf

Statistical Analysis
import statsmodels.api as sm

Machine Learning
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler

Suppress warnings
warnings.filterwarnings("ignore")

1.2 Add Directories To Path

[2]: # Add the source subdirectory to the system path to allow import config from,
~settings.py
current_directory = Path(os.getcwd())
website_base_directory = current_directory.parent.parent.parent
src_directory = website_base_directory / "src"
sys.path.append(str(src_directory)) if str(src_directory) not in sys.path else
~None

Import settings.py
from settings import config

Add configured directories from config to path

SOURCE_DIR = config("SOURCE_DIR")

sys.path.append(str(Path(SOURCE_DIR))) if str(Path(SOURCE_DIR)) not in sys.path,
~else None

Add other configured directories
BASE_DIR = config("BASE_DIR")

CONTENT_DIR = config("CONTENT_DIR")
POSTS_DIR = config("POSTS_DIR")

PAGES_DIR = config("PAGES_DIR")

PUBLIC_DIR = config("PUBLIC_DIR")
SOURCE_DIR = config("SOURCE_DIR")

DATA_DIR = config("DATA_DIR")
DATA_MANUAL_DIR = config("DATA_MANUAL_DIR")

Print system path
for i, path in enumerate(sys.path):
print(£"{i}: {pathl}")

: /usr/lib/python313.zip
: /usr/1ib/python3.13
: /usr/1ib/python3.13/1ib-dynload

> W N -, O

: /home/jared/python-virtual-envs/general-venv-p313/1lib/python3.13/site-
packages

5:
/home/jared/Cloud_Storage/Dropbox/Websites/jaredszajkowski.github.io_congo/src

1.3 Track Index Dependencies

[3]:|# Create file to track markdown dependencies
dep_file = Path("index_dep.txt")
dep_file.write_text("")

[3]: 0

[4]:

[5]:

[5]:

1.4 Python Functions

from calc_vix_trade_pnl import calc_vix_trade_pnl

from df_info import df_info

from df_info_markdown import df_info_markdown

from export_track_md_deps import export_track_md_deps

from load_data import load_data

from pandas_set_decimal_places import pandas_set_decimal_places
from plot_timeseries import plot_timeseries

from plot_stats import plot_stats

from plot_vix_with_trades import plot_vix_with_trades

from yf_pull_data import yf_pull_data

1.5 Data Overview - VIX
1.5.1 Acquire CBOE Volatility Index (VIX) Data

yf_pull_data(
base_directory=DATA_DIR,
ticker=""VIX",
source="Yahoo_Finance",
asset_class="Indices",
excel_export=True,
pickle_export=True,
output_confirmation=True,

)

[okkkokokokokokskokskokskok ok kokokok ok 1 00k kokkokkokkok sk ok ok ok kokkkkk] 1 of 1 completed

The first and last date of data for ~“VIX is:

Close High Low Open Volume
Date
1990-01-02 17.24 17.24 17.24 17.24 0
Close High Low Open Volume
Date
2026-01-26 16.15 17.389999 15.8 16.9 0

Yahoo Finance data complete for “VIX

Close High Low Open Volume
Date
1990-01-02 17.240000 17.240000 17.240000 17.240000 0
1990-01-03 18.190001 18.190001 18.190001 18.190001 0
1990-01-04 19.219999 19.219999 19.219999 19.219999 0
1990-01-05 20.110001 20.110001 20.110001 20.110001 0
1990-01-08 20.260000 20.260000 20.260000 20.260000 0

2026-01-20 20.090000 20.990000 18.639999 19.940001
2026-01-21 16.900000 20.809999 16.670000 19.309999
2026-01-22 15.640000 16.670000 15.270000 16.650000
2026-01-23 16.090000 16.209999 15.300000 15.680000
2026-01-26 16.150000 17.389999 15.800000 16.900000

[9083 rows x 5 columns]

1.5.2 Load Data - VIX

[6]:|# Set decimal places
pandas_set_decimal_places(2)

VIX

vix = load_data(
base_directory=DATA_DIR,
ticker=""VIX",
source="Yahoo_Finance",
asset_class="Indices",
timeframe="Daily",
file_format="excel",

Set 'Date’ column as datetime
vix['Date'] = pd.to_datetime(vix['Date'])

Drop 'Volume'
vix.drop(columns = {'Volume'}, inplace = True)

Set Date as index
vix.set_index('Date', inplace = True)

Check to see if there are any NalN values
vix[vix['High'] .isna()]

Forward ftll to clean up missing data
vix['High'] = vix['High'] .££i11()

1.5.3 DataFrame Info - VIX

[7]1: df _info(vix)

The columns, shape, and data types are:

<class 'pandas.core.frame.DataFrame'>

DatetimeIndex: 9083 entries, 1990-01-02 to 2026-01-26
Data columns (total 4 columns):

Column Non-Null Count Dtype

O O O O O

[8]:

Open
dtypes: flo

memory usage:

None
The first 5

Date

1990-01-02
1990-01-03
1990-01-04
1990-01-05
1990-01-08

The last 5

Date

2026-01-20
2026-01-21
2026-01-22
2026-01-23
2026-01-26

Copy this <!-- INSERT 01_VIX_DF_Info_HERE —--> to index_temp.md

9083
at64(4)
354.8 KB

rows are:

Close High
17.24 17.24
18.19 18.19
19.22 19.22
20.11 20.11
20.26 20.26

rows are:

Close High
20.09 20.99
16.90 20.81
15.64 16.67
16.09 16.21
16.15 17.39

export_track_md_deps (
dep_file=dep_file,

non-null
non-null
non-null

Low

17.24
18.19
19.22
20.11
20.26

Low

18.64
16.67
15.27
15.30
15.80

float64
float64
float64
float64

Open

17.24
18.19
19.22
20.11
20.26

Open

19.94
19.31
16.65
15.68
16.90

md_filename="01_VIX DF_Info.md",
content=df_info_markdown(vix),

output_type="markdown",

Exported and tracked: 01_VIX_ DF_Info.md

1.5.4 Statistics - VIX

[9]:

vix.describe ()
Adjusted to include -1 to 5

vix_stats
num_std = range(-1, 6)
for num in num_std:
vix_stats.loc[f"mean + {num} std"] = {
'Open': vix_stats.loc['mean']['Open'] + num * vix_stats.
<=loc['std']['Open'],
'High': vix_stats.loc['mean']['High'] + num * vix_stats.
sloc['std']['High'],
'Low': vix_stats.loc['mean']['Low'] + num * vix_stats.loc['std']['Low'],

[10]:

[11]:

'Close':

<loc['std']['Close'],

display(vix_stats)

}

Close
count 9083.00
mean 19.45
std 7.78
min 9.14
25% 13.94
50% 17.58
75% 22.73
max 82.69
mean + -1 std 11.67
mean + 0 std 19.45
mean + 1 std 27.23
mean + 2 std 35.01
mean + 3 std 42.79
mean + 4 std 50.57
mean + 5 std 58.35

High

9083

20.
8.
9.

14.

18.

23.

89.

12.

20.

28.

37.

45.

53.

62.

.00
36
34
31
60
31
73
53
03
36
70
03
37
70
04

L
9083.
18.
7.
8.
13.
16.
22.
72.
11.
18.
26.
33.
40.
48.
55.

ow
00
78
34
56
45
99
06
76
44
78
11
45
79
12
46

Open

9083.
19.
7.
9.
13.
17.
22.
82.
11.
19.
27.
35.
43.
50.
58.

Copy this <!-- INSERT 01_VIX_Stats_HERE
export_track_md_deps(
dep_file=dep_file,
md_filename="01_VIX Stats.md",

content=vix_stats.to_markdown(floatfmt=".2f"),

output_type="markdown",

Exported and tracked: 01_VIX_Stats.md

00
54
85
01
98
64
89
69
69
54
40
25
10
96
81

vix_stats.loc['mean']['Close'] + num * vix_stats.

--> to indexz_temp.md

Group by year and calculate mean and std for UHLC

vix_stats_by_year

Flatten the column Multilndex

vix.groupby(vix.index.year) [["Open", "High", "Low",
~"Close"]] .agg(["mean", "std" ,"min", "max"])

vix_stats_by_year.columns = ['_'.join(col).strip() for col in vix_stats_by_year.
<.columns.values]
vix_stats_by_year.index.name = "Year"

display(vix_stats_by_year)

Year
1990
1991
1992

Open_mean

23.06
18.38
15.23

Open_std Open_min Open_max High mean High_std High min \

4.74
3.68
2.26

14.72
13.95
10.29

36
36
20

.47
.20
.67

23.06 4.74 14.72
18.38 3.68 13.95
16.03 2.19 11.90

1993 12.70 1.37 9.18 16.20 13.34 1.40 9.55
1994 13.79 2.06 9.86 23.61 14.58 2.28 10.31
1995 12.27 1.03 10.29 15.79 12.93 1.07 10.95
1996 16.31 1.92 11.24 23.90 16.99 2.12 12.29
1997 22.43 4.33 16.67 45.69 23.11 4.56 18.02
1998 25.68 6.96 16.42 47.95 26.61 7.36 16.50
1999 24.39 2.90 18.05 32.62 25.20 3.01 18.48
2000 23.41 3.43 16.81 33.70 24.10 3.66 17.06
2001 26.04 4.98 19.21 48.93 26.64 5.19 19.37
2002 27.53 7.03 17.23 48.17 28.28 7.25 17.51
2003 22.21 5.31 15.59 35.21 22.61 5.35 16.19
2004 15.59 1.93 11.41 21.06 16.05 2.02 11.64
2005 12.84 1.44 10.23 18.33 13.28 1.59 10.48
2006 12.90 2.18 9.68 23.45 13.33 2.46 10.06
2007 17.59 5.36 9.99 32.68 18.44 5.76 10.26
2008 32.83 16.41 16.30 80.74 34.57 17.83 17.84
2009 31.75 9.20 19.54 52.65 32.78 9.61 19.67
2010 22.73 5.29 15.44 47.66 23.69 5.82 16.00
2011 24.27 8.17 14.31 46.18 25.40 8.78 14.99
2012 17.93 2.60 13.68 26.35 18.569 2.72 14.08
2013 14.29 1.67 11.52 20.87 14.82 1.88 11.75
2014 14.23 2.65 10.40 29.26 14.95 3.02 10.76
2015 16.71 3.99 11.77 31.91 17.79 5.03 12.22
2016 16.01 4.05 11.32 29.01 16.85 4.40 11.49
2017 11.14 1.34 9.23 16.19 11.72 1.54 9.52
2018 16.63 5.01 9.01 37.32 18.03 6.12 9.31
2019 15.57 2.74 11.55 27.54 16.41 3.06 11.79
2020 29.562 12.45 12.20 82.69 31.46 13.89 12.42
2021 19.83 3.47 15.02 35.16 21.12 4.22 15.54
2022 25.98 4.30 16.57 37.50 27.25 4.59 17.81
2023 17.12 3.17 11.96 27.77 17.83 3.58 12.46
2024 15.69 3.14 11.53 33.71 16.65 4.73 12.23
2025 19.19 5.57 14.09 60.13 20.44 6.74 14.16
2026 16.22 1.47 14.85 19.94 16.83 1.77 15.21

High max Low_mean Low_std Low_min Low_max Close_mean Close_std \

Year

1990 36.47 23.06 4.74 14.72 36.47 23.06 4.74
1991 36.20 18.38 3.68 13.95 36.20 18.38 3.68
1992 25.13 14.85 2.14 10.29 19.67 15.45 2.12
1993 18.31 12.25 1.28 8.89 15.77 12.69 1.33
1994 28.30 13.38 1.99 9.59 23.61 13.93 2.07
1995 16.99 11.96 0.98 10.06 14.97 12.39 0.97
1996 27.05 15.94 1.82 11.11 21.43 16.44 1.94
1997 48.64 21.85 3.98 16.36 36.43 22.38 4.14
1998 49.53 24.89 6.58 16.10 45.58 25.60 6.86
1999 33.66 23.75 2.76 17.07 31.13 24 .37 2.88
2000 34.31 22.75 3.19 16.28 30.56 23.32 3.41

2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026

Year
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008

49.
48.
35.
22.
18.
23.
37.
89.
57.
48.
48.
27.
21.
31.
53.
32.
17.
50.
28.
85.
37.
38.
30.
65.
60.
20.

35
46
66
67
59
81
50
53
36
20
00
73
91
06
29
09
28
30
53
47
51
94
81
73
13
99

25.
26.
21.
15.
12.
12.
16.
30.
30.
21.
23.
17.
13.
13.
15.
15.
10.
15.
14.
27.
18.
24.
16.
14.
18.
15.

22
60
64
05
39
38
75
96
50
69
15
21
80
61
85
16
64
53
76
50
65
69
36
92
o7
40

Close_min Close_max

14.
13.
11.

9.

9.
10.
12.
17.
16.
17.
16.
18.
17.
15.
11.
10.

9.

9.
16.

72
95
51
31
94
36
00
09
23
42
53
76
40
58
23
23
90
89
30

36.
36.
21.
17.
23.
15.
21.
38.
45.
32.
33.
43.
45.
34.
21.
17.
23.
31.
80.

47
20
02
30
87
74
99
20
74
98
49
74
08
69
58
74
81
09
86

I e AN T

1

S

NBR B W WN R NN

1

o

=N NWN

.61
.64
.18
.79
.32
.96
.95
.96
.63
.61
.59
.37
.51
.21
.65
.66
.16
.25
.38
.85
.93
.91
.89
.58
.22
.06

18.
17.
14.
.14

74
02
66

9.88

©

.39
.70
15.
19.
15.
14.
13.
11.
10.
10.
10.
.56
.92
11.
11.
14.
16.
11.
10.
13.
14.

82
25
23
27
30
05
28
88
93

03
75
10
34
81
62
38
43

42,
42,
33.
20.
16.
21.
30.
T2.
49.
40.
41.
25.
19.
24.
29.
26.
14.
29.
24.
70.
29.
33.
24.
24.
38.
18.

66
05
99
61
41
45
44
76
27
30
51
72
04
64
91
67
97
66
05
37
24
11
00
02
58
64

25.
27.
21.
15.
12.
12.
17.
32.
31.
22.
24.
17.
14.
14.
16.
15.
11.
16.
15.
29.
19.
25.
16.
15.
18.
15.

75
29
98
48
81
81
54
69
48
55
20
80
23
17
67
83
09
64
39
25
66
62
87
61
96
87

ON B~ = 01O D

1

N

N O, W HE NP DN O ©

1

N

= 0w Wb w

.78
.91
.24
.92
.47
.25
.36
.38
.08
.27
.14
.54
.74
.62
.34
.97
.36
.09
.61
.34
.62
.22
.14
.36
.32
.34

2009 19.47 56.65

2010 15.45 45.79
2011 14.62 48.00
2012 13.45 26.66
2013 11.30 20.49
2014 10.32 25.27
2015 11.95 40.74
2016 11.27 28.14
2017 9.14 16.04
2018 9.15 37.32
2019 11.54 25.45
2020 12.10 82.69
2021 15.01 37.21
2022 16.60 36.45
2023 12.07 26.52
2024 11.86 38.57
2025 13.47 52.33
2026 14.49 20.09

[12]: # Copy this <!-- INSERT 01_VIX Stats_By_Year HERE --> to indexz_temp.md
export_track_md_deps(
dep_file=dep_file,
md_filename="01_VIX_Stats_By_Year.md",
content=vix_stats_by_year.to_markdown(floatfmt=".2f"),
output_type="markdown",

Exported and tracked: 01_VIX_Stats_By_Year.md

[13]: | # Group by month and calculate mean and std for OHLC
vix_stats_by_month = vix.groupby(vix.index.month) [["Open", "High", "Low",
~"Close"]] .agg(["mean", "std", "min", "max"])

Flatten the column Multilndex

vix_stats_by_month.columns = ['_'.join(col).strip() for col in,
~vix_stats_by_month.columns.values]

vix_stats_by_month.index.name = "Month"

display(vix_stats_by_month)

Open_mean Open_std Open_min Open_max High mean High std High min \

Month

1 19.27 7.15 9.01 51.52 20.06 7.52 9.31
2 19.67 T7.22 10.19 52.50 20.51 7.65 10.26
3 20.47 9.63 10.59 82.69 21.39 10.49 11.24
4 19.43 7.48 10.39 60.13 20.24 7.93 10.89
5 18.60 6.04 9.75 47 .66 19.40 6.43 10.14
6 18.46 5.75 9.79 44 .09 19.15 6.02 10.28

7 17.83 5.67 9.18 48.17 18.53 5.90 9.52
8 19.09 6.67 10.04 45.34 20.03 7.38 10.32
9 20.37 8.23 9.59 48.93 21.21 8.55 9.83
10 21.72 10.16 9.23 79.13 22.73 10.97 9.62
11 20.34 9.54 9.31 80.74 21.06 9.91 9.74
12 19.24 8.16 9.36 66.68 19.98 8.43 9.55

High max Low_mean Low_std Low_min Low_max Close_mean Close_std \

Month

1 57.36 18.54 6.81 8.92 49.27 19.15 7.11

2 53.16 18.90 6.81 9.70 48.97 19.58 7.13

3 85.47 19.54 8.65 10.53 70.37 20.35 9.56

4 60.59 18.65 6.88 10.22 52.76 19.29 7.28

5 48.20 17.89 5.63 9.56 40.30 18.51 5.96

6 44 .44 17.73 5.40 9.37 34.97 18.34 5.68

7 48.46 17.21 5.41 8.84 42.05 17.76 5.60

8 65.73 18.35 6.32 9.52 41.77 19.09 6.80

9 49.35 19.62 7.82 9.36 43.74 20.29 8.12

10 89.53 20.82 9.40 9.11 67.80 21.64 10.12

11 81.48 19.53 8.91 8.56 72.76 20.16 9.41

12 68.60 18.53 7.79 8.89 62.31 19.18 8.07
Close_min Close_max

Month

1 9.15 56.65

2 10.02 52.62

3 10.74 82.69

4 10.36 57.06

5 9.77 45.79

6 9.75 40.79

7 9.36 44 .92

8 9.93 48.00

9 9.51 46.72

10 9.19 80.06

11 9.14 80.86

12 9.31 68.51

[14]: # Copy this <!-- INSERT 01_VIX_ Stats_By_Month_HERE --> to indez_temp.md
export_track_md_deps (
dep_file=dep_file,
md_filename="01_VIX_Stats_By_Month.md",
content=vix_stats_by_month.to_markdown(floatfmt=".2f"),
output_type="markdown",

Exported and tracked: 01_VIX_Stats_By_Month.md

10

1.5.5 Deciles - VIX

[15]: vix_deciles = vix.quantile(np.arange(0, 1.1, 0.1))
display(vix_deciles)

Close High Low O0Open
.00 9.14 9.31 8.56 9.01
.10 12.14 12.65 11.73 12.15
.20 13.30 13.90 12.89 13.35
.30 14.67 15.36 14.17 14.74
.40 16.10 16.77 15.57 16.15
.50 17.58 18.31 16.99 17.64
.60 19.47 20.32 18.89 19.59
.70 21.54 22.54 20.89 21.67
.80 24.23 25.21 23.35 24.31
.90 28.62 29.90 27.62 28.78
.00 82.69 89.53 72.76 82.69

P O O O O O OO O o o

[16]: | # Copy this <!-- INSERT 01_VIX Dectles_HERE --> to index_temp.md
export_track_md_deps (
dep_file=dep_file,
md_filename="01_VIX Deciles.md",
content=vix_deciles.to_markdown(floatfmt=".2f"),

output_type="markdown",

Exported and tracked: 01_VIX_ Deciles.md

[17]1: # Group by year for deciles
vix_deciles_by_year = vix.groupby(vix.index.year) [["Open", "High", "Low",
~"Close"]] .quantile(np.arange(0, 1.1, 0.1))

display(vix_deciles_by_year)

Open High Low Close
Date
1990 0.00 14.72 14.72 14.72 14.72
.10 17.18 17.18 17.18 17.18
.20 18.47 18.47 18.47 18.47
.30 20.08 20.08 20.08 20.08
.40 21.15 21.15 21.15 21.15

o O O O

.60 16.06 16.54 15.30 15.86
.70 16.43 16.66 15.30 16.03

2026 0
0
0.80 16.65 17.39 15.80 16.15
0
1

.90 18.10 19.45 16.44 16.82
.00 19.94 20.99 18.64 20.09

[407 rows x 4 columns]

11

[18]: | # Copy this <!-- INSERT 01_VIX Dectles_By_Year HERE --> to tindex_temp.md
export_track_md_deps (
dep_file=dep_file,
md_filename="01_VIX_Deciles_By_Year.md",
content=vix_deciles_by_year.to_markdown(floatfmt=".2f"),
output_type="markdown",

Exported and tracked: 01_VIX_Deciles_By_Year.md

[19]: current_year = datetime.now().year
last_year = current_year - 1

print(f"Last year: {last_yearl}")
vix_deciles_last_year = vix_deciles_by_year.loc[last_year]
display(vix_deciles_last_year)

print (f"Current year: {current_year}")
vix_deciles_current_year = vix_deciles_by_year.loc[current_year]
display(vix_deciles_current_year)

Last year: 2025

Open High Low Close
.00 14.09 14.16 13.38 13.47
.10 15.15 15.80 14.74 15.04
.20 15.88 16.50 15.28 15.72
.30 16.40 17.09 15.77 16.31
.40 16.79 17.48 16.19 16.64
.50 17.45 18.21 16.61 17.20
.60 18.25 19.31 17.42 17.96
.70 19.52 21.01 18.23 19.13
.80 21.16 22.84 19.57 21.21
.90 24.57 26.37 23.29 24.66
.00 60.13 60.13 38.58 52.33

P O O O O O OO O o o

Current year: 2026

Open High Low Close
.00 14.85 15.21 14.43 14.49
.10 14.97 15.35 14.55 14.63
.20 15.14 15.48 14.65 14.90
.30 15.40 15.83 14.79 15.25
.40 15.68 16.21 15.03 15.45
.50 15.68 16.40 15.21 15.74
.60 16.06 16.54 15.30 15.86
.70 16.43 16.66 15.30 16.03
.80 16.65 17.39 156.80 16.15
.90 18.10 19.45 16.44 16.82
.00 19.94 20.99 18.64 20.09

P O O O O O OO O o o

12

[20]: | # Copy this <!-- INSERT 01_Last_Year HERE --> to index_temp.md
export_track_md_deps (
dep_file=dep_file,
md_filename="01_Last_Year.md",
content=f"{last_year}",
output_type="markdown",

Copy this <!-- INSERT 01_VIX Deciles_Last_Year_ HERE --> to indez_temp.md
export_track_md_deps(
dep_file=dep_file,
md_filename="01_VIX_Deciles_Last_Year.md",
content=vix_deciles_last_year.to_markdown(floatfmt=".2f"),
output_type="markdown",

Exported and tracked: 01_Last_Year.md
Exported and tracked: 01_VIX_Deciles_Last_Year.md

[21]: # Copy this <!-- INSERT 01_Current_Year_HERE --> to indez_temp.md
export_track_md_deps(
dep_file=dep_file,
md_filename="01_Current_Year.md",
content=f"{current_year}",
output_type="markdown",

Copy this <!-- INSERT 01_VIX Deciles_Current_Year_ HERE —--> to index_temp.md
export_track_md_deps (
dep_file=dep_file,
md_filename="01_VIX Deciles_Current_Year.md",
content=vix_deciles_current_year.to_markdown(floatfmt=".2f"),
output_type="markdown",

Exported and tracked: 01_Current_Year.md
Exported and tracked: 01_VIX_Deciles_Current_Year.md

1.6 Time Between Levels
[22] : import pandas as pd

import math

from typing import Literal

Op = Literal["==" ny—n nsn ng=n g

def compare(value: float, threshold: float, op: Op) -> bool:
AN OPE==Ra==CF:

13

return value == threshold

if op == ">=":

return value >= threshold
if op == ">":

return value > threshold
if op == "<=":

return value <= threshold
if op == "<":

return value < threshold
raise ValueError (f"Unsupported op: {op}")

def compute_waits(
df: pd.DataFrame,
high col: str = "High",
trigger_a: float = 20.0,
trigger_b: float = 20.0,
op_a: Op = ">=",
op_b: Op = ">=",
strictly_after: bool = True,
) —> pd.DataFrame:
For each day % where df[high_col] op_a trigger_a, find the next day j
(7 > % if strictly_after else j >= ¢) where df[high_col] op_b trigger_b.
df = df.sort_index()
idx = df.index
highs = df [high_col].values
n = len(df)

rows = []
for i in range(n):
if compare(highs[i], trigger_a, op_a):
start_j = i + 1 if strictly_after else i
j_found = None
for j in range(start_j, n):
if compare(highs[jl, trigger_b, op_b):
j_found = j
break

if j_found is Nome:
next_date = pd.NaT if isinstance(idx, pd.DatetimeIndex) else
~None
next_high = math.nan
wait_td = math.nan
wait_cd = math.nan
else:
next_date = idx[j_found]

14

next_high = float(highs[j_found])
wait_td = j_found - 1
if isinstance(idx, pd.DatetimeIndex):
wait_cd = (idx[j_found] .normalize() - idx[i] .normalize()).
~days
else:
wait_cd = math.nan

rows . append(
{

"date_a": idx[il,
"high_at_a": float(highs[i]),
"date_b": next_date,
"high_at_b": next_high,
"wait_trading_days": wait_td,
"wait_calendar_days": wait_cd,

return pd.DataFrame(rows)

[23]: | # When daily high <= 15, how long until next datily high >= 207?
res_1t15_to_gt20 = compute_waits(
df=vix,
high col="High",
trigger_a=15,
trigger_b=20,
op_a="<=",
op_b=">=",
strictly_after=True,

res_1t15_to_gt20

[23]: date_a high at_a date_b high_at_b wait_trading days \
0 1990-06-21 14.72 1990-07-23 23.68 21
1 1991-03-14 14.94 1991-04-09 20.12 17
2 1991-03-15 14.90 1991-04-09 20.12 16
3 1991-08-13 14.73 1991-08-19 21.19 4
4 1991-08-22 14.59 1991-11-15 21.18 60
2530 2025-09-12 14.97 2025-10-10 22.44 20
2531 2025-12-23 14.45 2026-01-20 20.99 17
2532 2025-12-24 14.16 2026-01-20 20.99 16
2533 2025-12-26 14.29 2026-01-20 20.99 15
2534 2025-12-30 14.62 2026-01-20 20.99 13

15

wait_calendar_days

0 32
1 26
2 25
3 6
4 85
2530 28
2531 28
2532 27
2533 25
2534 21

[2535 rows x 6 columns]

[24]: | # Plot histogram for wait times
import matplotlib.pyplot as plt

plt.figure(figsize=(12, 6))

plt.hist(res_1t15_to_gt20['wait_trading_days'].dropna(), bins=200, alpha=0.5,,
~label='LT 15 to GT 20')

plt.xlabel('Days')

plt.ylabel('Frequency')

plt.title('Wait Times for VIX Highs')

plt.legend()

plt.show()

Wait Times for VIX Highs

601 1T 15 to GT 20

Frequency

0 100 200 300 400 500

16

[25] :

[26]:

[26] :

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt
from typing import Optional, Tuple

def compute_wait_cdf (

waits_df: pd.DataFrame,

column: str = "wait_trading_days",
) —> pd.DataFrame:

nmnn

Compute the empirical CDF for wait times.

Returns a DataFrame with:
- 'watt': unique wait values (sorted)
- 'count': frequency for each watt
- 'cdf': cumulative probability P(Wait <= z)
- 'ccdf': complementary CDF = 1 - cdf (P(Watt > z))
Drop NalNs; don't cast to int (keep original type)
waits = waits_df [column] .dropna() .to_numpy()
if waits.size ==
return pd.DataFrame(columns=["wait", "count", "cdf", "ccdf"])

Unique values and counts

vals, counts = np.unique(waits, return_counts=True)
cum_counts = np.cumsum(counts)

n = waits.size

cdf = cum_counts / n

ccdf = 1.0 - cdf

out = pd.DataFrame(
{"wait": vals, "count": counts, "cdf": cdf, "ccdf": ccdf}
)

return out

cdf_df = compute_wait_cdf (
waits_df=res_1t15_to_gt20,
column="wait_trading_days")

cdf_df

wait count cdf ccdf

0 1 1 0.00 1.00
1 2 7 0.00 1.00
2 3 11 0.01 0.99
3 4 15 0.01 0.99
4 5 15 0.02 0.98

17

[27]:

[28]:

461 472

11.00 0.00
462 478 11.00 0.00
463 479 11.00 0.00
464 493 11.00 0.00
465 494 1 1.00 0.00

[466 rows x 4 columns]

Plot CDF

plt.figure(figsize=(12, 6))
plt.plot(cdf_df['wait'], cdf_df['cdf'])
plt.title('CDF of LT 15 to GT 20')
plt.xlabel('Wait"')

plt.ylabel('CDF')

plt.grid()

plt.show()

CDF of LT 15 to GT 20

1.0 4

0.8 4

0.6 1

CDF

0.4 4

0.2 4

0.0 1

T T
0 100 200
Wait

import pandas as pd
import numpy as np

def empirical_hit_probabilities(
df: pd.DataFrame,
high col: str,
thresholds,
horizons,
) —> pd.DataFrame:

18

T
300

T
400

T
500

mnimnn

Compute empirical probability of reaching a threshold high within given,
~horizons.

Parameters
df : pd.DataFrame

Sorted daily data with a High column.
high_col : str

Name of the column with daily highs.
thresholds : list of floats

Target levels (e.g. [18,19,20,21,22]).
horizons : list of ints

Lookahead windows in trading days.

Returns
pd.DataFrame

Rows = horizons, Cols = thresholds, entries = probability [0,1].
nimnn

df = df.sort_index()
highs = df [high_col] .values
n = len(highs)

probs = pd.DataFrame(index=horizons, columns=thresholds, dtype=float)

for h in horizons:
valid_starts = n - h # last h days have incomplete windows
if valid_starts <= O:
continue
window_max = np.array([highs[i+1:i+h+1] .max() for i in,
wrange(valid_starts)])
note: exclude same day (t+1:...) so it's "future"” only
for thr in thresholds:
hits = (window_max >= thr).sum()
probs.loc[h, thr] = hits / valid_starts

return probs

[29] : probs = empirical_hit_probabilities(
df=vix,
high col="High",
thresholds=range (15, 35),
horizons=range(5, 101, 5),

19

display (probs)

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100

O O O O O O O OO OO O0OOOOOoOOoO oo oo

O O O O O O OO OO O0OOOOOOoOOoOoO o oo

15

.78
.83
.85
.87
.89
.91
.92
.93
.94
.94
.95
.95
.96
.96
.97
.97
.97
.98
.98
.98

29

.16
.19
.22
.25
.27
.29
.31
.33
.34
.36
.37
.38
.40
.41
.42
.43
.44
.45
.46
.47

O O O O O O O OO OO OO OOOOoO oo oo

O O O O O O OO OO0 OO OOOoO oo oo

16

.73
.78
.81
.83
.85
.87
.89
.90
.91
.92
.93
.93
.94
.94
.95
.95
.96
.96
.97
.97

30

.14
.17
.20
.22
.24
.26
.28
.29
.31
.32
.34
.35
.37
.38
.39
.41
.42
.43
.44
.46

O O O O O O OO OO O0OO0OO0OOOO0OOoOOoOOo oo

O O O O O O OO OO O0OO0OO0OOOO0OOoOOoOOo oo

17

.66
.71
.75
LT7
.80
.81
.83
.84
.85
.86
.87
.88
.89
.90
.91
.91
.92
.92
.93
.93

31

.12
.15
.17
.19
.22
.23
.25
.27
.28
.30
.31
.32
.34
.35
.36
.37
.39
.40
.41
.42

O O O O O O O OO OO O0OOOOoOOoO oo oo

O O O O O O O OO OO O0OOOOOOoOOoOoO o oo

18

.59
.64
.68
.71
.74
.76
17
.79
.80
.81
.82
.83
.84
.85
.86
.87
.87
.88
.88
.89

32

.10
.13
.15
.16
.18
.20
.22
.23
.25
.26
.27
.29
.30
.31
.32
.33
.35
.36
.37
.38

O O O O O O OO OO OOOOOOOOoOOoO o oo

O O O O O O OO OO0 OO OOOOoOOoOo oo

19

.54
.59
.62
.65
.68
.70
.72
.74
.75
77
.78
.80
.81
.82
.83
.84
.84
.85
.85
.86

33

.09
.11
.13
.15
.17
.19
.20
.22
.23
.24
.26
.27
.28
.29
.30
.31
.32
.34
.35
.36

O O O O O O OO OO O0OO0OO0OOOO0OOoOOoOOoO oo

O O O O O O OO OO O0OO0OO0OOOO0OOoOOoOOo oo

20

.49
.54
.58
.60
.63
.65
.67
.69
.71
.72
.74
.75
.76
.78
.79
.80
.80
.81
.82
.83

34

.08
.10
.12
.14
.15
.17
.19
.20
.21
.23
.24
.25
.26
.28
.29
.30
.31
.32
.33
.34

O O O O O O O OO OO O0OOOOoOOoO oo oo

21

.44
.49
.53
.56
.59
.61
.63
.65
.67
.69
.71
.72
.74
.75
LTT
.78
.79
.80
.81
.81

O O O O O O OO OO0 OO OOOOoOOoO o oo

22
.39
.43
.47
.49
.52
.54
.56
.58
.60
.61
.63
.64
.65
.66
.67
.68
.69
.70
.71
.72

20

O O O O O O OO OO O0OO0OO0OOOO0OOoOOoOOo oo

23

.35
.40
.43
.46
.49
.51
.53
.55
.57
.58
.60
.61
.62
.63
.65
.66
.67
.68
.69
.69

O O O O O O O OO OO O0OOOOoO oo o oo

24

.30
.35
.38
.41
.43
.45
.47
.49
.51
.52
.53
.54
.55
.56
.57
.58
.59
.60
.61
.62

O O O O O O OO OO0 OO OOOOoO oo oo

25

.26
.30
.34
.37
.39
.42
.44
.46
.47
.49
.50
.51
.53
.54
.55
.56
.57
.58
.59
.59

O O O O O O OO OO0OO0OOO0OOOO0OOoOOoOOo oo

26

.23
.27
.31
.33
.36
.39
.41
.43
.44
.46
.47
.49
.50
.51
.52
.54
.55
.56
.57
.57

O O O O O O O OO OO OO OOOoOOoOoO o oo

27

.20
.25
.28
.31
.34
.36
.38
.40
.42
.44
.45
.47
.48
.49
.51
.52
.53
.54
.55
.56

O O O O O O OO OO OOOOOOOOoO oo oo

28

.18
.22
.26
.28
.31
.33
.35
.37
.39
.40
.42
.43
.44
.46
.47
.48
.49
.50
.51
.52

[30]:

import pandas as pd
import numpy as np

def conditional_hit_probabilities(

df: pd.DataFrame,

today_high: float,

high col: str,

thresholds,

horizons,

tolerance: float, # how close history must be to today's high
) —> pd.DataFrame:

mnn

Conditional probability of hitting thresholds within horizons,
gtven today's high is near “today_high .

Parameters
adf : pd.DataFrame
Daily data with highs.
today_high : float
Today's observed high.
high_col : str
Column containing the daily highs.
thresholds : list of floats
Target levels to evaluate (e.g., [18,19,20,...]).
horizons : list of ints
Lookahead windows (in trading days).
tolerance : float
Acceptable deviation from today's high when finding historicaly
—analogues.

Returns
pd.DataFrame

Probabilities indexed by horizon (rows) and thresholds (columns).
mmnn

df = df.sort_index()
highs = df [high_col] .values
n = len(highs)

Find indices where the high ~ today's high

candidates = np.where((highs >= today_high - tolerance) & (highs <=
~today_high + tolerance)) [0]

if len(candidates) ==

21

[31]:

raise ValueError("No historical days found within tolerance of today's
~high")

probs = pd.DataFrame(index=horizons, columns=thresholds, dtype=float)

for h in horizonms:
valid_hits = 0O
total = O
for i in candidates:
if i + h < n: # need full window
window_max = highs[i+1:i+h+1] .max() # strictly future days
for thr in thresholds:
if np.isnan(probs.loc[h, thr]):
probs.loclh, thr] = 0.0
if window_max >= thr:
probs.loc[h, thr] += 1
total += 1
if total > O:
probs.locl[h] /= total # normalize to probability
else:
probs.loc[h] = np.nan # no valid ezamples

return probs

Get yesterday's high as an example
yesterday = vix.iloc[-2]
yesterday_high = vix['High'].iloc[-2]

display (yesterday)
display(yesterday_high)

cond_probs = conditional_hit_probabilities(
df=vix,
today_high=yesterday_high,
high col="High",
thresholds=range (15, 31),
horizons=range(5, 71, 5),
tolerance=0.25

display(cond_probs)

Close 16.09
High 16.21
Low 15.30
Open 15.68
Name: 2026-01-23 00:00:00, dtype: float64

22

[32]:

np.

10
15
20
25
30
35
40
45
50
55
60
65
70

5

10
15
20
25
30
35
40
45
50
55
60
65
70

1.7

float64(16.20999908447266)

O O O O O OO OO OO o o Oo

O O O O O OO OO OO o oo

15 16 17
.96 0.80 0.46
.97 0.88 0.60
.98 0.91 0.71
.98 0.93 0.77
.98 0.93 0.81
.99 0.95 0.85
.99 0.96 0.87
.99 0.96 0.88
.99 0.96 0.89
.99 0.97 0.89
.99 0.97 0.90
.99 0.97 0.90
.99 0.98 0.91
.99 0.98 0.91
30
.00
.01
.03
.05
.07
.09
.11
.12
.13
.15
.16
.16
.17
.19
Plots - VIX

O O O O O OO OO OO o oo

18

.23
.39
.51
.60
.66
.72
.76
.78
.79
.80
.81
.82
.83
.84

O O O O O OO OO OO o oo

19

.16
.28
.40
.49
.54
.60
.65
.70
.72
.74
.76
.78
.79
.80

O O O O O O OO OO O O o oo

20

.08
.19
.30
.38
.43
.48
.52
.56
.59
.61
.64
.67
.68
.70

O O O O O OO OO OO o o Oo

21

.07
.16
.23
.31
.36
.39
.44
.50
.53
.55
.59
.62
.63
.65

1.7.1 Histogram Distribution - VIX

Plotting
plt.figure(figsize=(12, 6), facecolor="#F5F5F5")

Histogram

plt.hist([vix['High']], label=['High'], bins=200, edgecolor='black',
scolor='steelblue', alpha=1)
plt.hist([vix['Low']], label=['Low'], bins=200, edgecolor='black',

scolor='lightblue', alpha=0.5)

O O O O O OO OO OO o oo

22

.03
.08
.16
.22
.26
.30
.34
.38
.41
.43
.46
.48
.50
.52

O O O O O O OO O OO O o oo

23

.02
.06
.14
.19
.23
.26
.31
.35
.37
.39
.41
.43
.44
.46

O O O O O OO OO OO o oo

24

.01
.04
.10
.14
.19
.22
.26
.30
.32
.33
.35
.35
.37
.39

O O O O OO OO OO OO o Oo

25

.01
.04
.09
.14
.18
.21
.24
.27
.29
.30
.31
.32
.34
.36

O O O O O O OO O OO O o oo

26

.01
.03
.08
11
.15
.19
.21
.24
.25
.26
.29
.31
.32
.35

O O O O O OO OO OO o oo

27

.01
.02
.06
.09
.13
.16
.18
.20
.22
.24
.26
.28
.29
.31

Plot a vertical line at the mean, mean + 1 std, and mean + 2 std

23

O O O O OO OO OO OO oo

28

.01
.01
.05
.08
.12
.14
.16
.17
.18
.19
.20
.22
.23
.25

O O O O O O OO OO O O o oo

29

.00
.01
.04
.06
.08
.11
.12
.13
.14
.15
.16
.16
.17
.19

plt.axvline(vix_stats.loc['mean + -1 std']['High'], color='brown',
~linestyle='dashed', linewidth=1, label=f'High Mean - 1 std: {vix_stats.
loc['mean + -1 std']['High']:.2f}")

plt.axvline(vix_stats.loc['mean + -1 std']['Low'], color='brown',
~linestyle='solid', linewidth=1, label=f'Low Mean - 1 std: {vix_stats.
~loc['mean + -1 std']['Low']:.2f}")

plt.axvline(vix_stats.loc['mean'] ['High'], color='red', linestyle='dashed',
~linewidth=1, label=f'High Mean: {vix_stats.loc['mean']['High']:.2f}")

plt.axvline(vix_stats.loc['mean'] ['Low'], color='red', linestyle='solid',
<linewidth=1, label=f'Low Mean: {vix_stats.loc['mean']['Low']:.2f}')

plt.axvline(vix_stats.loc['mean + 1 std']J['High'], color='green',
~linestyle='dashed', linewidth=1, label=f'High Mean + 1 std: {vix_stats.
»loc['mean + 1 std']['High']:.2f}')

plt.axvline(vix_stats.loc['mean + 1 std']J['Low'], color='green',,
~linestyle='solid', linewidth=1, label=f'Low Mean + 1 std: {vix_stats.
wloc['mean + 1 std']['Low']:.2f}")

plt.axvline(vix_stats.loc['mean + 2 std']['High'], color='orange',
~linestyle='dashed', linewidth=1, label=f'High Mean + 2 std: {vix_stats.
<loc['mean + 2 std']['High']:.2f}")

plt.axvline(vix_stats.loc['mean + 2 std']['Low'], color='orange',,
~linestyle='solid', linewidth=1, label=f'Low Mean + 2 std: {vix_stats.
~loc['mean + 2 std']J['Low']:.2f}"')

plt.axvline(vix_stats.loc['mean + 3 std']['High'], color='black',
~linestyle='dashed', linewidth=1, label=f'High Mean + 3 std: {vix_stats.
»loc['mean + 3 std']['High']:.2f}')

plt.axvline(vix_stats.loc['mean + 3 std']['Low'], color='black',,
~linestyle='solid', linewidth=1, label=f'Low Mean + 3 std: {vix_stats.
wloc['mean + 3 std']['Low']:.2f}")

plt.axvline(vix_stats.loc['mean + 4 std']['High'], color='yellow',
~linestyle='dashed', linewidth=1, label=f'High Mean + 4 std: {vix_stats.
~loc['mean + 4 std']['High']:.2f}")

plt.axvline(vix_stats.loc['mean + 4 std']['Low'], color='yellow',,
~linestyle='solid', linewidth=1, label=f'Low Mean + 4 std: {vix_stats.
~loc['mean + 4 std']['Low']:.2f}"')

Set X azis

x_tick_spacing = 5 # Specify the interval for y-azis ticks
plt.gca() .xaxis.set_major_locator(MultipleLocator(x_tick_spacing))
plt.xlabel("VIX", fontsize=10)

plt.xticks(rotation=0, fontsize=8)

24

Set Y azis

y_tick_spacing = 25 # Specify the interval for y-azxis ticks
plt.gca() .yaxis.set_major_locator(MultipleLocator(y_tick_spacing))
plt.ylabel("# Of Datapoints", fontsize=10)

plt.yticks(fontsize=8)

Set title, layout, grid, and legend

plt.title("CBOE Volatility Index (VIX) Histogram (200 Bins)", fontsize=12)
plt.tight_layout ()

plt.grid(True, linestyle='--', alpha=0.7)

plt.legend(fontsize=9)

Save figure and display plot
plt.savefig("01_Histogram+Mean+SD.png", dpi=300, bbox_inches="tight")
plt.show()

CBOE Volatility Index (VIX) Histogram (200 Bins)

Bl High
3 Low
~-- High Mean - 1 std: 12.03
—— Low Mean -1 std: 11.44
~-- High Mean: 20.36
—— Low Mean: 18.78
---- High Mean + 1 std: 28.70
—— Low Mean + 1 std: 26.11
High Mean + 2 std: 37.03
Low Mean + 2 std: 33.45
---- High Mean + 3 std: 45.37
—— Low Mean + 3 std: 40.79
High Mean + 4 std: 53.70
Low Mean + 4 std: 48.12

-
[z
el

Of Datapoints
e
g

=
|~
]

=
=1
=1

~
&

n
8

Il
el

o
I

¥ 7 <R \ T u T
55 60 65 70 75 80 85 a0

1.7.2 Historical Data - VIX

[33]: plot_timeseries(
price_df=vix,
plot_start_date=None,
plot_end_date="2009-12-31",
plot_columns=["High", "Low"],
title="CBOE Volatility Index (VIX), 1990 - 2009",
x_label="Date",
x_format="Year",
y_label="VIX",
y_format="Decimal",

25

y_format_decimal_places=0,
y_tick_spacing=5,

grid=True,

legend=True,

export_plot=True,
plot_file_name="01_VIX_Plot_1990-2009",

CBOE Volatility Index (VIX), 1990 - 2009

90 —— High
= Low

851

80 1

751

701

65 1

55
50 | .
45
40
35
30 | |
25
20 . J

151 ‘ '
101

VIX

19901991199219931994 19951996 19971998 1999200020012002 20032004 20052006 2007 200820092010
Date

[34]: plot_timeseries(
price_df=vix,
plot_start_date="2010-01-01",
plot_end_date=None,
plot_columns=["High", "Low"],
title="CBOE Volatility Index (VIX), 2010 - Present",
x_label="Date",
x_format="Year",
y_label="VIX",
y_format="Decimal",
y_format_decimal_places=0,
y_tick_spacing=5,
grid=True,
legend=True,
export_plot=True,
plot_file_name="01_VIX_Plot_2010-Present",

26

CBOE Volatility Index (VIX), 2010 - Present

85
80
75
70 4
65

55 A
350
45
40
35
30

VIX

20
151
10

—— High
— Low

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026

Date

[35]: plot_timeseries(
price_df=vix,
plot_start_date="2024-01-01",
plot_end_date=None,
plot_columns=["High", "Low"],
title="CBOE Volatility Index (VIX), 2024 - Present",
x_label="Date",
x_format="Year",
y_label="VIX",
y_format="Decimal",
y_format_decimal_places=0,
y_tick_spacing=5,
grid=True,
legend=True,
export_plot=True,
plot_file_name="01_VIX_Plot_2024-Present",

27

CBOE Volatility Index (VIX), 2024 - Present

—— High
= Low

65

55 A

50

45

VIX

[36]: plot_timeseries(
price_df=vix,
plot_start_date="2025-01-01",
plot_end_date=None,
plot_columns=["High", "Low"],
title="CBOE Volatility Index (VIX), 2025 - Present",
x_label="Date",
x_format="Year",
y_label="VIX",
y_format="Decimal",
y_format_decimal_places=0,
y_tick_spacing=5,
grid=True,
legend=True,
export_plot=True,
plot_file_name="01_VIX_Plot_2025-Present",

28

CBOE Volatility Index (VIX), 2025 - Present

55 1

50

45

40

VIX

35

30

25

20

154

—— High
— Low

2025 2026

Date

1.7.3 Stats By Year - VIX

[37]: plot_stats(
stats_df=vix_stats_by_year,
plot_columns=["Open_mean", "High mean", "Low_mean", "Close_mean"],
title="VIX Mean OHLC By Year",
x_label="Year",
x_rotation=45,
x_tick_spacing=1,
y_label="Price",
y_tick_spacing=1,
grid=True,
legend=True,
export_plot=True,
plot_file_name="01_VIX_Stats_By_Year"

29

VIX Mean OHLC By Year

w
w

LSS S

LA B

Price
BEERRY
e90

es °

ses
e
o
ese

==

14 e
it i
l 8 o

L]
L
L]
® L
L]
: :
s
[
L
L
L]
4 & o
LJ he L4
SRR FRES s
;6 L .2 =
o
e

Open_mean
High_mean
Low_mean
Close_mean

&

CICACAC I G CIIC O I e i e g B g

Year

1.7.4 Stats By Month - VIX

[38]: plot_stats(
stats_df=vix_stats_by_month,

plot_columns=["Open_mean", "High _mean",

title="VIX Mean OHLC By Month",
x_label="Month",

x_rotation=0,

x_tick_spacing=1,

y_label="Price",

y_tick_spacing=1,

grid=True,

legend=True,

export_plot=True,
plot_file_name="01_VIX_Stats_By_Month"

30

"Low_mean", "Close mean"],

VIX Mean OHLC By Month

22 4

Price

19 4

18

17 4

Open_mean
High_mean
Low_mean
Close_mean

1.8 Data Overview - VVIX
1.8.1 Acquire CBOE VVIX Data

[39]: yf_pull_data(
base_directory=DATA_DIR,
ticker=""VVIX",
source="Yahoo_Finance",

asset_class="Indices",

excel_export=True,
pickle_export=True,
output_confirmation=True,

)

[okokosksksksk sk okokokokokokok ok sk skokokokok 1 0 Q7 ok kokokokokokokok ok sk sk ok ko kokokok ok ok

The first and last date of data for “VVIX is:

Date
2007-01-03

Date
2026-01-26

Close High Low Open Volume

87.63 87.63 87.63 87.63 0

Close High Low 0Open Volume

99.75 102.62 99.01 102.62 0

Yahoo Finance data complete for "“VVIX

31

1 of 1 completed

[39]: Close High Low Open Volume
Date
2007-01-03 87.63 87.63 87.63 87.63
2007-01-04 88.19 88.19 88.19 88.19
2007-01-05 90.17 90.17 90.17 90.17
2007-01-08 92.04 92.04 92.04 92.04
2007-01-09 92.76 92.76 92.76 92.76

O O O O O

2026-01-20 117.05 120.21 110.28 118.27
2026-01-21 102.57 113.46 101.47 112.72
2026-01-22 96.12 101.96 95.93 100.10
2026-01-23 101.83 101.91 96.23 99.03
2026-01-26 99.75 102.62 99.01 102.62

O O O O O

[4787 rows x 5 columns]

1.8.2 Load Data - VVIX

[40] : | # Set decimal places
pandas_set_decimal_places(2)

VVIX

vvix = load_data(
base_directory=DATA_DIR,
ticker=""VVIX",
source="Yahoo_Finance",
asset_class="Indices",
timeframe="Daily",
file_format="excel",

Set 'Date' column as datetime
vvix['Date'] = pd.to_datetime(vvix['Date'])

Drop 'Volume'
vvix.drop(columns = {'Volume'}, inplace = True)

Set Date as index
vvix.set_index('Date', inplace = True)

Check to see if there are any NalN values
vvix[vvix['High'] .isna()]

Forward ftll to clean up missing data
vvix['High'] = vvix['High'].££i110)

32

1.8.3 DataFrame Info - VVIX

[41]: df _info(vvix)

The columns, shape, and data types are:
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 4787 entries, 2007-01-03 to 2026-01-26
Data columns (total 4 columns):
Column Non-Null Count Dtype

0 Close 4787 non-null float64
1 High 4787 non-null float64
2 Low 4787 non-null float64
3 Open 4787 non-null float64

dtypes: float64(4)

memory usage: 187.0 KB

None

The first 5 rows are:

Close High Low Open
Date
2007-01-03 87.63 87.63 87.63 87.63
2007-01-04 88.19 88.19 88.19 88.19
2007-01-05 90.17 90.17 90.17 90.17
2007-01-08 92.04 92.04 92.04 92.04
2007-01-09 92.76 92.76 92.76 92.76

The last 5 rows are:

Close High Low Open
Date
2026-01-20 117.05 120.21 110.28 118.27
2026-01-21 102.57 113.46 101.47 112.72
2026-01-22 96.12 101.96 95.93 100.10
2026-01-23 101.83 101.91 96.23 99.03
2026-01-26 99.75 102.62 99.01 102.62

[42] : | # Copy this <!-- INSERT 02 VVIX DF Info_HERE --> to tindex_temp.md
export_track_md_deps (
dep_file=dep_file,
md_filename="02_VVIX_DF_Info.md",
content=df info markdown(vix),
output_type="markdown",

Exported and tracked: 02_VVIX_DF_Info.md

33

1.8.4 Statistics - VVIX

[43]: vvix_stats = vvix.describe()
num_std = [-1, 0, 1, 2, 3, 4, 5]
for num in num_std:
vvix_stats.loc[f"mean + {num} std"] = {
'Open': vvix_stats.loc['mean']['Open'] + num * vvix_stats.
~loc['std'] ['Open'],
'High': vvix_stats.loc['mean']['High'] + num * vvix_stats.
~loc['std']['High'],
'Low': vvix_stats.loc['mean']['Low'] + num * vvix_stats.
<loc['std']['Low'],
'Close': vvix_stats.loc['mean']['Close'] + num * vvix_stats.
~loc['std']['Close'],
}
display(vvix_stats)

Close High Low Open
count 4787.00 4787.00 4787.00 4787.00
mean 93.66 95.76 92.07 93.91
std 16.26 17.89 14.91 16.31
min 59.74 59.74 59.31 59.31
25% 82.59 83.81 81.69 82.84
50% 90.89 92.70 89.72 91.30
75% 102.13 105.07 99.86 102.58
max 207.59 212.22 187.27 212.22
mean + -1 std 77.40 77.87 77.16 77.60
mean + 0 std 93.66 95.76 92.07 93.91
mean + 1 std 109.92 113.65 106.98 110.23
mean + 2 std 126.18 131.53 121.90 126.54
mean + 3 std 142.44 149.42 136.81 142.85
mean + 4 std 158.70 167.31 151.72 159.17
mean + 5 std 174.96 185.19 166.63 175.48

[44]: # Copy this <!-- INSERT 02 VVIX_ Stats_ HERE --> to indexz_temp.md
export_track_md_deps (
dep_file=dep_file,
md_filename="02_VVIX_Stats.md",
content=vvix_stats.to_markdown(floatfmt=".2f"),
output_type="markdown",

Exported and tracked: 02_VVIX_Stats.md

[45]: # Group by year and calculate mean and std for OHLC
vvix_stats_by_year = vvix.groupby(vvix.index.year)[["Open", "High", "Low",
-"Close"]] .agg(["mean", "std", "min", "max"])

34

Flatten the column Multilndex

vvix_stats_by_year.columns = ['_'.join(col).strip() for col in,
vvix_stats_by_year.columns.values]

vvix_stats_by_year.index.name = "Year"

display(vvix_stats_by_year)

Open_mean Open_std Open_min Open_max High mean High_std High_min \

Year
2007 87.68 13.31 63.52 142.99 87.68 13.31 63.52
2008 81.85 15.60 59.74 134.87 81.85 15.60 59.74
2009 79.78 8.63 64.95 104.02 79.78 8.63 64.95
2010 88.36 13.07 64.87 145.12 88.36 13.07 64.87
2011 92.94 10.21 75.94 134.63 92.94 10.21 75.94
2012 94 .84 8.38 78.42 117 .44 94 .84 8.38 78.42
2013 80.52 8.97 62.71 111.43 80.52 8.97 62.71
2014 83.01 14.33 61.76 138.60 83.01 14.33 61.76
2015 95.44 15.59 73.07 212.22 98.47 16.39 76.41
2016 93.36 10.02 77.96 131.95 95.82 10.86 78.86
2017 90.50 8.65 75.09 134.98 92.94 9.64 77.34
2018 102.60 13.22 83.70 176.72 106.27 16.26 85.00
2019 91.28 8.43 75.58 112.75 93.61 8.98 75.95
2020 118.64 19.32 88.39 203.03 121.91 20.88 88.54
2021 115.51 9.37 96.09 151.35 119.29 11.70 98.36
2022 102.58 18.01 76.48 161.09 105.32 19.16 77.93
2023 90.95 8.64 74.43 127.73 93.72 9.98 75.31
2024 92.88 15.06 59.31 169.68 97.32 18.33 T4.79
2025 101.94 12.83 83.19 186.33 106.13 15.40 84.54
2026 98.43 8.48 89.81 118.27 100.45 8.70 90.43
High max Low_mean Low_std Low_min Low_max Close_mean Close_std \
Year
2007 142.99 87.68 13.31 63.52 142.99 87.68 13.31
2008 134.87 81.85 15.60 59.74 134.87 81.85 15.60
2009 104.02 79.78 8.63 64.95 104.02 79.78 8.63
2010 145.12 88.36 13.07 64.87 145.12 88.36 13.07
2011 134.63 92.94 10.21 75.94 134.63 92.94 10.21
2012 117.44 94.84 8.38 78.42 117.44 94.84 8.38
2013 111.43 80.52 8.97 62.71 111.43 80.52 8.97
2014 138.60 83.01 14.33 61.76 138.60 83.01 14.33
2015 212.22 92.15 13.35 72.20 148.68 94.82 14.75
2016 132.42 90.54 8.99 76.17 115.15 92.80 10.07
2017 135.32 87.85 7.78 71.75 117.29 90.01 8.80
2018 203.73 99.17 11.31 82.60 165.35 102.26 14.04
2019 117.63 88.90 7.86 74.36 111.48 91.03 8.36
2020 209.76 115.05 17.37 85.31 187.27 118.36 19.39
2021 168.78 111.99 8.14 95.92 144.19 115.32 10.20
2022 172.82 99.17 16.81 76.13 153.26 101.81 17.81

35

2023 137.65 88.01 7.37 72.27 119.64 90.34 8.38

2024 192.49 89.51 13.16 59.31 137.05 92.81 15.60
2025 189.03 98.38 10.11 81.72 146.51 101.32 12.36
2026 120.21 95.34 6.43 86.70 110.28 97.43 T7.76

Close_min Close_max

Year

2007 63.52 142.99
2008 59.74 134.87
2009 64.95 104.02
2010 64.87 145.12
2011 75.94 134.63
2012 78.42 117.44
2013 62.71 111.43
2014 61.76 138.60
2015 73.18 168.75
2016 76.17 125.13
2017 75.64 135.32
2018 83.21 180.61
2019 74.98 114.40
2020 86.87 207.59
2021 97.09 157.69
2022 77.05 154.38
2023 73.88 124.75
2024 73.26 173.32
2025 81.89 170.92
2026 88.19 117.05

[46]: # Copy this <!-- INSERT 02 VVIX_ Stats_By_ Year HERE --> to indez_temp.md
export_track_md_deps(
dep_file=dep_file,
md_filename="02_VVIX_Stats_By_Year.md",
content=vvix_stats_by_year.to_markdown(floatfmt=".2f"),
output_type="markdown",

Exported and tracked: 02_VVIX_Stats_By_Year.md

[47]: # Group by month and calculate mean and std for OHLC
vvix_stats_by_month = vvix.groupby(vvix.index.month) [["Open", "High", "Low",
-"Close"]] .agg(["mean", "std", "min", "max"])

Flatten the column Multilndex
vvix_stats_by_month.columns = ['_'.join(col).strip() for col in
~vvix_stats_by_month.columns.values]

vvix_stats_by_month.index.name = "Year"

display(vvix_stats_by_month)

36

Open_mean Open_std Open_min Open_max High mean High std High_min \

Year

1 92.70 15.45 64.87 161.09 94.62 17.39 64.87

2 93.49 18.24 65.47 176.72 95.39 20.70 65.47

3 95.30 21.66 66.97 203.03 97.38 23.56 66.97

4 92.18 19.03 59.74 186.33 94.01 20.57 59.74

5 92.25 16.93 61.76 145.18 93.95 17.99 61.76

6 93.16 14.86 63.52 155.48 94.76 16.11 63.52

7 90.10 12.82 67.21 138.42 91.63 13.88 67.21

8 96.84 16.53 68.05 212.22 98.99 18.33 68.05

9 94.91 13.70 67.94 135.17 96.84 15.36 67.94

10 98.05 13.86 64.97 149.60 99.88 15.05 64.97

11 94 .24 14.31 63.77 142.68 95.93 15.64 63.77

12 93.32 14.67 59.31 151.35 95.31 16.24 62.71
High max Low_mean Low_std Low_min Low_max Close_mean Close_std \

Year

1 172.82 90.87 14.03 64.87 153.26 92.44 15.56

2 203.73 91.39 16.43 65.47 165.35 93.13 18.58

3 209.76 92.94 19.51 66.97 187.27 94.89 21.59

4 189.03 90.30 17.21 59.74 152.01 91.88 18.60

5 151.50 90.54 16.14 61.76 145.12 91.79 16.79

6 172.21 91.49 13.79 63.52 140.15 92.98 14.83

7 149.60 88.60 11.94 67.21 133.82 89.98 12.78

8 212.22 94.67 14.50 68.05 148.68 96.61 16.24

9 147.14 93.04 12.20 67.94 128.46 94.58 13.44

10 154.99 96.36 13.11 64.97 144 .55 97.87 14.02

11 161.76 92.55 13.40 63.77 140.44 93.95 14.37

12 168.37 91.71 13.37 59.31 144.19 93.38 14.72
Close_min Close_max

Year

1 64.87 157.69

2 65.47 180.61

3 66.97 207.59

4 59.74 170.92

5 61.76 146.28

6 63.52 151.60

7 67.21 139.54

8 68.05 173.32

9 67.94 138.93

10 64.97 152.01

11 63.77 149.74

12 62.71 156.10

[48]: # Copy this <!-- INSERT 02 VVIX_Stats_By_Month_HERE --> to index_temp.md
export_track_md_deps(

37

[49] :

[50]:

[51]:

dep_file=dep_file,
md_filename="02_VVIX_Stats_By_Month.md",
content=vvix_stats_by_month.to_markdown(floatfmt=".2f"),
output_type="markdown",

Exported and tracked: 02_VVIX_Stats_By_Month.md

1.8.5 Deciles - VVIX

vvix_deciles = vvix.quantile(np.arange(0, 1.1, 0.1))
display(vvix_deciles)

Close High Low Open
.00 59.74 59.74 59.31 59.31
.10 76.05 76.41 75.59 76.14
.20 80.83 81.67 80.03 80.99
.30 84.19 85.58 83.31 84.50
.40 87.54 88.97 86.39 87.81
.50 90.89 92.70 89.72 91.30
.60 94.49 96.66 93.28 94.81
.70 99.18 101.75 97.47 99.48
.80 105.84 109.38 103.68 106.43
.90 115.10 118.68 112.33 115.28
.00 207.59 212.22 187.27 212.22

P O O O O O OO O o o

Copy this <!-- INSERT 02_VVIX_ Deciles_HERE --> to indexz_temp.md
export_track_md_deps (
dep_file=dep_file,
md_filename="02_VVIX Deciles.md",
content=vvix_deciles.to_markdown(floatfmt=".2f"),
output_type="markdown",

Exported and tracked: 02_VVIX_Deciles.md

1.9 Plots - VVIX
1.9.1 Histogram Distribution - VVIX

Plotting
plt.figure(figsize=(12, 6), facecolor="#F5F5F5")

Histogram

plt.hist([vvix['High']], label=['High'], bins=200, edgecolor='black',,
scolor='steelblue', alpha=1)

plt.hist([vvix['Low']], label=['Low'], bins=200, edgecolor='black',,
scolor='lightblue', alpha=0.5)

38

Plot a vertical line at the mean, mean + 1 std, and mean + 2 std

plt.axvline(vvix_stats.loc['mean + -1 std']['High'], color='brown',,
~linestyle='dashed', linewidth=1, label=f'High Mean - 1 std: {vvix_stats.
~loc['mean + -1 std']['High']:.2f}")

plt.axvline(vvix_stats.loc['mean + -1 std']['Low'], color='brown',,
~linestyle='solid', linewidth=1, label=f'Low Mean - 1 std: {vvix_stats.
~loc['mean + -1 std']['Low']:.2f}"')

plt.axvline(vvix_stats.loc['mean']['High'], color='red', linestyle='dashed',
~linewidth=1, label=f'High Mean: {vvix_stats.loc['mean']['High']:.2f}"')

plt.axvline(vvix_stats.loc['mean']['Low'], color='red', linestyle='solid',,
~linewidth=1, label=f'Low Mean: {vvix_stats.loc['mean']['Low']:.2f}"')

plt.axvline(vvix_stats.loc['mean + 1 std']['High'], color='green',
~linestyle='dashed', linewidth=1, label=f'High Mean + 1 std: {vvix_stats.
~loc['mean + 1 std']['High']:.2f}")

plt.axvline(vvix_stats.loc['mean + 1 std']J['Low'], color='green',
~linestyle='solid', linewidth=1, label=f'Low Mean + 1 std: {vvix_stats.
~loc['mean + 1 std']['Low']:.2f}")

plt.axvline(vvix_stats.loc['mean + 2 std']['High'], color='orange',,
~linestyle='dashed', linewidth=1, label=f'High Mean + 2 std: {vvix_stats.
»loc['mean + 2 std']['High']:.2f}')

plt.axvline(vvix_stats.loc['mean + 2 std']['Low'], color='orange',
~linestyle='solid', linewidth=1, label=f'Low Mean + 2 std: {vvix_stats.
~loc['mean + 2 std']['Low']:.2f}")

plt.axvline(vvix_stats.loc['mean + 3 std']['High'], color='black',
~linestyle='dashed', linewidth=1, label=f'High Mean + 3 std: {vvix_stats.
~loc['mean + 3 std']['High']:.2f}")

plt.axvline(vvix_stats.loc['mean + 3 std']['Low'], color='black',
~linestyle='solid', linewidth=1, label=f'Low Mean + 3 std: {vvix_stats.
~loc['mean + 3 std']['Low']:.2f}"')

plt.axvline(vvix_stats.loc['mean + 4 std']['High'], color='yellow',,
~linestyle='dashed', linewidth=1, label=f'High Mean + 4 std: {vvix_stats.
»loc['mean + 4 std']['High']:.2f}')

plt.axvline(vvix_stats.loc['mean + 4 std']['Low'], color='yellow',
~linestyle='solid', linewidth=1, label=f'Low Mean + 4 std: {vvix_stats.
~loc['mean + 4 std']['Low']:.2f}")

Set X azis

x_tick_spacing = 5 # Specify the interval for y-axis ticks
plt.gca() .xaxis.set_major_locator (MultipleLocator(x_tick_spacing))
plt.xlabel ("VVIX", fontsize=10)

plt.xticks(rotation=0, fontsize=8)

39

Set Y azis

y_tick_spacing = 25 # Specify the interval for y—azis ticks
plt.gca() .yaxis.set_major_locator(MultipleLocator(y_tick_spacing))

plt.ylabel("# Of Datapoints", fontsize=10)

plt.yticks(fontsize=8)

Set title, layout, grid, and legend
plt.title("CBOE VVIX Histogram (200 Bins)", fontsize=12)

plt.tight_layout ()

plt.grid(True, linestyle='--', alpha=0.7)

plt.legend(fontsize=9)

Save figure and display plot

plt.savefig("02_Histogram+Mean+SD.png", dpi=300, bbox_inches="tight")

plt.show()

CBOE VVIX Histogram (200 Bins)

Of Datapoints

ol 3

1.9.2 Historical Data - VVIX

[52]: plot_timeseries(

price_df=vvix,
plot_start_date=None,

plot_end_date="2016-12-31",

plot_columns=["High", "Low"],
title="CBOE VVIX, 2007 - 2016",

x_label="Date",
x_format="Year",
y_label="VIX",

40

B High

T Low

---- High Mean - 1 std: 77.87

—— Low Mean - 1 std: 77.16

-=--- High Mean: 95.76

—— Low Mean: 92.07

---- High Mean + 1 std: 113.65

—— Low Mean + 1 std: 106.98
High Mean + 2 std: 131.53
Low Mean + 2 std: 121.90

---- High Mean + 3 std: 149.42

—— Low Mean + 3 std: 136.81
High Mean + 4 std: 167.31
Low Mean + 4 std: 151.72

dinsn e ol b lma nll dlhe ma_m s mg =an

T = x ? T \ ¥ T + T T T T ? t T
55 B0 65 70 75 80 8 9 9 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215
WIX

y_format="Decimal",
y_format_decimal_places=0,
y_tick_spacing=15,

grid=True,

legend=True,

export_plot=True,
plot_file_name="02_VVIX_Plot_2007-2016",

CBOE WVIX, 2007 - 2016

210

1954

1804

1651

1504

VIX

135 1

120 1

1054 I

90 1

751 1

—— High
— Low

2007 2008 2009 2010 2011 2012 2013 2014 2015
Date

[63]: plot_timeseries(
price_df=vvix,
plot_start_date="2017-01-01",
plot_end_date=None,
plot_columns=["High", "Low"],
title="CBOE VVIX, 2017 - Present",
x_label="Date",
x_format="Year",
y_label="VIX",
y_format="Decimal",
y_format_decimal_places=0,
y_tick_spacing=15,
grid=True,
legend=True,
export_plot=True,
plot_file_name="02_VVIX_Plot_2017-Present",

41

2016

2017

CBOE WVIX, 2017 - Present

210 —— High
— Low
195 -
180 -
165 -

1504

135 1

VIX

120 1

105 1

90 1

754

2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
Date

[64]: plot_timeseries(
price_df=vvix,
plot_start_date="2024-01-01",
plot_end_date=None,
plot_columns=["High", "Low"],
title="CBOE VVIX, 2024 - Present",
x_label="Date",
x_format="Month",
y_label="VIX",
y_format="Decimal",
y_format_decimal_places=0,
y_tick_spacing=15,
grid=True,
legend=True,
export_plot=True,
plot_file_name="02_VVIX_Plot_2024-Present",

42

CBOE VVIX, 2024 - Present
195 —— High

1804

1651

1504

135

VIX

120 1

105 1

90 +

751

60,

Dec [A02PDaN 822087 /26 U202y S2A CIOARa2R0 ZeaR 250002 B0 0 Mg aC B0 IR02p0 FEaR e B026
Date

[55]: plot_timeseries(
price_df=vvix,
plot_start_date="2025-01-01",
plot_end_date=None,
plot_columns=["High", "Low"],
title="CBOE VVIX, 2025 - Present",
x_label="Date",
x_format="Month",
y_label="VIX",
y_format="Decimal",
y_format_decimal_places=0,
y_tick_spacing=15,
grid=True,
legend=True,
export_plot=True,
plot_file_name="02_VVIX_Plot_2025-Present",

43

CBOE VWVIX, 2025 - Present

—— High
— Low

180 1
165
150

x
= 1354

120 +

105

90 4

Jan 2026eb 20Mar 2025pr 2028ay 2025in 2025ul 202%ug 20Zep 2025t 2028ov 20Z5c 202an 2026eb 2026
Date

1.9.3 Stats By Year - VVIX

[56]: plot_stats(
stats_df=vvix_stats_by_year,
plot_columns=["Open_mean", "High mean", "Low_mean", "Close_mean"],
title="VVIX Mean OHLC By Year",
x_label="Year",
x_rotation=45,
x_tick_spacing=1,
y_label="Price",
y_tick_spacing=5,
grid=True,
legend=True,
export_plot=True,
plot_file_name="02_VVIX_Stats_By_Year"

44

VVIX Mean OHLC By Year

® @® Open_mean
120 o @ High_mean
[] ® Llow_mean
@ Close_mean
15 ® L]
L]
110
L J ®
105
3 * b
£ 100 ° ° L
* e * 3
% - 'y g ° °
o
° i ° . °
] ° ¢ L. L IS
]
° . ° L
85
° L]
80 Y °
T T T T T T T T T T T
a ® o S o> & 2 ™ o © A & o o > 4%] > o ©
s & S5 N NG 3 N 3 i 3 & > 4 5 g 4% 4t 3 3
0 P 0 P P P P P P P P P P P P P P P P ®

1.9.4 Stats By Month - VVIX

[67]: plot_stats(

stats_df=vvix_stats_by_month,

plot_columns=["Open_mean", "High _mean",

title="VVIX Mean OHLC By Month",

x_label="Month",
x_rotation=0,
x_tick_spacing=1,
y_label="Price",
y_tick_spacing=1,
grid=True,
legend=True,
export_plot=True,

plot_file_name="02_VVIX_Stats_By_Month"

45

"Low_mean", "Close mean"],

VVIX Mean OHLC By Month

100 ® @® Open_mean
@ High_mean
99 @ ® Low_mean
@ Close_mean
%8 8
L]
97 4 ' &
L]
239 L]
] ° []
R
L] L J
[* d . °
4= L]
[¢ L [
b4 °
o3 ° '™ 8 ®
8 i o
[]
a2
. °
o []
o L]
a1 ®
® °
0]
69 4
L]
T

Month

1.10 Data Overview - VIX/VVIX
1.10.1 Merge VIX & VVIX Data

[68]: # Merge VIX and VVIX dataframes on Date
vix_over_vvix = pd.merge(vix, vvix, left_index=True, right_index=True,
wsuffixes=('_VIX', ' _VVIX'))

Calc VIX/VVIX ratios

vix_over_vvix['Close_VIX_to_VVIX Ratio'] = vix_over_vvix['Close VIX'] /.
~vix_over_vvix['Close VVIX']

vix_over_vvix['High VIX_to_VVIX_Ratio']l = vix_over_vvix['High VIX'] /.
~vix_over_vvix['High VVIX']

vix_over_vvix['Low_VIX_to_VVIX_ Ratio'] = vix_over_vvix['Low_VIX'] /.
~vix_over_vvix['Low_VVIX']

vix_over_vvix['Open_VIX_to_VVIX_Ratio'] = vix_over_vvix['Open_VIX'] /.
~vix_over_vvix['Open_VVIX']

Drop VIX and VVIX columns, keep only ratio columns
vix_over_vvix = vix_over_vvix[['Close_VIX_to_VVIX_Ratio',
«'High_VIX_to_VVIX_Ratio', 'Low_VIX_to_VVIX_Ratio', 'Open_VIX_to_VVIX_Ratio'l]

[69]: df_info(vix_over_vvix)

The columns, shape, and data types are:

<class 'pandas.core.frame.DataFrame'>

DatetimeIndex: 4787 entries, 2007-01-03 to 2026-01-26
Data columns (total 4 columns):

Column Non-Null Count Dtype

46

0 Close_VIX_to_VVIX_Ratio 4787 non-null float64
1 High_VIX_to_VVIX_Ratio 4787 non-null float64
2 Low_VIX_to_VVIX_Ratio 4787 non-null float64
3 Open_VIX_to_VVIX_Ratio 4787 non-null float64

dtypes: float64(4)

memory usage: 187.0 KB

None

The first 5 rows are:

Close_VIX_to_VVIX_Ratio High VIX to_VVIX_Ratio \

Date
2007-01-03 0.14 0.15
2007-01-04 0.13 0.14
2007-01-05 0.13 0.14
2007-01-08 0.13 0.14
2007-01-09 0.13 0.13
Low_VIX_to_VVIX_Ratio Open_VIX_to_VVIX_Ratio
Date
2007-01-03 0.13 0.14
2007-01-04 0.13 0.14
2007-01-05 0.13 0.13
2007-01-08 0.13 0.14
2007-01-09 0.13 0.13

The last 5 rows are:

Close_VIX_to_VVIX_Ratio High VIX_to_VVIX_Ratio \

Date
2026-01-20 0.17 0.17
2026-01-21 0.16 0.18
2026-01-22 0.16 0.16
2026-01-23 0.16 0.16
2026-01-26 0.16 0.17
Low_VIX_to_VVIX_Ratio Open_VIX_to_VVIX_Ratio
Date
2026-01-20 0.17 0.17
2026-01-21 0.16 0.17
2026-01-22 0.16 0.17
2026-01-23 0.16 0.16
2026-01-26 0.16 0.16

[60]: # Copy this <!-- INSERT 03 VIX_ Over_VVIX_DF_Info_ HERE --> to index_temp.md
export_track_md_deps(
dep_file=dep_file,
md_filename="03_VIX Over_VVIX DF _Info.md",
content=df _info_markdown(vix_over_vvix),

47

[61]:

output_type="markdown",

Exported and tracked: 03_VIX_Over_VVIX_DF_Info.md

1.10.2 Statistics - VIX/VVIX

vix_over_vvix_stats = vix_over_vvix.describe()
num_std = [-1, 0, 1, 2, 3, 4, 5]
for num in num_std:

vix_over vvix_stats.loc[f"mean + {num} std"] = {

'Open_VIX_to_VVIX_Ratio': vix_over_vvix_stats.
~loc['mean'] ['Open_VIX_ to_VVIX_ Ratio'] + num * vix_over_vvix_stats.
»loc['std'] ['Open_VIX_ to_VVIX_ Ratio'],

'High VIX_to_VVIX_Ratio': vix_over_vvix_stats.
loc['mean'] ['High VIX_to_VVIX_Ratio'] + num * vix_over_vvix_stats.
sloc['std']['High_VIX_to_VVIX_Ratio'],

'Low_VIX_to_VVIX_Ratio': vix_over_vvix_stats.
<~loc['mean'] ['Low _VIX to VVIX Ratio'] + num * vix_over_vvix_stats.
~loc['std'] ['Low_VIX_to_VVIX_ Ratio'l,

'Close_VIX_ _to_VVIX Ratio': vix_over_vvix_stats.
~loc['mean'] ['Close_VIX_to_VVIX Ratio'] + num * vix_over_vvix_stats.
<loc['std']['Close VIX to VVIX Ratio'],

}

display(vix_over_vvix_stats)

Close_VIX_to_VVIX_Ratio High_ VIX_to_VVIX_Ratio \
count 4787 .00 4787.00
mean 0.21 0.22
std 0.09 0.09
min 0.10 0.10
25% 0.16 0.16
50% 0.18 0.19
75% 0.24 0.25
max 0.76 0.81
mean + -1 std 0.13 0.13
mean + 0 std 0.21 0.22
mean + 1 std 0.30 0.31
mean + 2 std 0.38 0.40
mean + 3 std 0.47 0.50
mean + 4 std 0.56 0.59
mean + 5 std 0.64 0.68

Low_VIX_to_VVIX_Ratio Open_VIX_to_VVIX_Ratio
count 4787 .00 4787 .00
mean 0.21 0.21
std 0.08 0.09

48

min 0.10 0.10
25% 0.16 0.16
50% 0.18 0.19
75% 0.23 0.24
max 0.72 0.81
mean + -1 std 0.12 0.13
mean + 0 std 0.21 0.21
mean + 1 std 0.29 0.30
mean + 2 std 0.37 0.39
mean + 3 std 0.45 0.48
mean + 4 std 0.53 0.56
mean + 5 std 0.62 0.65

[62]: # Copy this <!-- INSERT 03_VIX_ Over_VVIX_Stats_HERE --> to index_temp.md
export_track_md_deps (
dep_file=dep_file,
md_filename="03_VIX Over_ VVIX Stats.md",
content=vix_over_vvix_stats.to_markdown(floatfmt=".2f"),
output_type="markdown",

Exported and tracked: 03_VIX_Over_VVIX_Stats.md

[63]: # # Group by year and calculate mean and std for OHLC
vviz_stats_by_year = vviz.groupby (vviz.index.year)[["Open”, "High", "Low",
"Close"]].agg(["mean”, "std", "min", "maz"])

Flatten the column Multilndex

vviz_stats_by_year.columns = ['_'.join(col).strip() for col iny
svviz_stats_by_year.columns.values]

vviz_stats_by_vyear.index.name = "Year"

display(vviz_stats_by_year)

[64]: # # Copy this <!-- INSERT 02_VVIX_Stats_By_Year_HERE --> to indez_temp.md
export_track_md_deps(dep_file=dep_file, md_filename="02_ VVIX_ Stats_By_ Year.
omd", content=vviz_stats_by_year.to_markdoun(floatfmt=".2f"))

[65]: # # Group by month and calculate mean and std for OHLC
vvuiz_stats_by_month = vviz.groupby(vviz.index.month) [["Open", "High", "Low",
"Close"]].agg(["mean”, "std", "min", "maz"])

Flatten the column Multilndex
vvuiz_stats_by_month.columns = ['_'.j0in(col).strip() for col im,
wvviz_stats_by_month.columns.values]

vviz_stats_by_month.index.name = "Year"

display(vviz_stats_by_month)

49

[66]:

[67]:

[68]:

[69]:

Copy thts <!-- INSERT 02 VVIX_Stats_By_Month_HERE --> to index_temp.md
export_track_md_deps(dep_file=dep_file, md_filename="02_VVIX_Stats_By_Month.

omd", content=vviz_stats_by_month.to_markdown(floatfmt=".2f"))

1.10.3 Deciles - VIX/VVIX

vix_over_vvix_deciles
display(vix_over_vvix_deciles)

vix_over_vvix.quantile(np.arange(0, 1.1, 0.1))

Close_VIX_to_VVIX Ratio

.00
.10
.20
.30
.40
.50
.60
.70
.80
.90
.00

P O O O O O OO O o o

0.

O O O O O O O o oo

10
.14
.16
.16
.17
.18
.20
.22
.26
.32
.76

Open_VIX_to_VVIX_Ratio
0.
.14
.16
.17
.17
.19
.20
.22
.26
.32
.81

.00
.10
.20
.30
.40
.50
.60
.70
.80
.90
.00

P O O O O O OO O o o

O O OO O O O O oo

10

O O O O O O O O oo

High_VIX_to_VVIX_Ratio
0.
.15
.16
.17
.18
.19
.21
.23
.27
.33
.81

10

O O O O O O O O O o

Low_VIX_to_VVIX Ratio
0.
.14
.15
.16
.17
.18
.19
.21
.25
.31
.72

10

Copy this <!-- INSERT 03_VIX_Over_VVIX Deciles_HERE --> to indexz_temp.md
export_track_md_deps(dep_file=dep_file, md_filename="03_VIX_Over_VVIX_ Deciles.

-md", content=vix_over_vvix_deciles.to_markdown(floatfmt=".2f"))

Exported and tracked: 03_VIX_Over_VVIX_Deciles.md

1.11 Plots - VIX/VVIX

1.11.1 Histogram Distribution - VIX/VVIX

Plotting

plt.figure(figsize=(12, 6), facecolor="#F5F5F5")

50

\

Histogram

plt.hist([vix_over_vvix['High VIX_ to_VVIX Ratio']]l,
~label=['High VIX_to_VVIX_Ratio'], bins=200, edgecolor='black',
scolor="'steelblue', alpha=1)

plt.hist([vix_over_vvix['Low_VIX_to_VVIX_Ratio'll,
~label=['Low_VIX_to_VVIX_Ratio'], bins=200, edgecolor='black',
~color="'lightblue', alpha=0.5)

Plot a vertical line at the mean, mean + 1 std, and mean + 2 std
plt.axvline(vix_over_vvix_stats.loc['mean + -1 std']['High_ VIX_to_VVIX_Ratio'l],
~color='brown', linestyle='dashed', linewidth=1, label=f'High Mean - 1 std:
~{vix_over_vvix_stats.loc['mean + -1 std']['High VIX_ to_VVIX Ratio']:.2f}')
plt.axvline(vix_over_vvix_stats.loc['mean + -1 std']['Low_VIX_to_VVIX_Ratio'l,

~color="brown', linestyle='solid', linewidth=1, label=f'Low Mean - 1 std:
+{vix_over_vvix_stats.loc['mean + -1 std']['Low_VIX_ to_VVIX Ratio']:.2f}")

plt.axvline(vix_over_vvix_stats.loc['mean']['High VIX_to_VVIX_Ratio'l],
~color='red', linestyle='dashed', linewidth=1, label=f'High Mean:
~{vix_over_vvix_stats.loc['mean'] ['High_VIX_to_VVIX_Ratio'l]:.2f}')

plt.axvline(vix_over_vvix_stats.loc['mean'] ['Low_VIX_ to_VVIX Ratio'],
~color='red', linestyle='solid', linewidth=1, label=f'Low Mean:
{vix_over_vvix_stats.loc['mean']['Low _VIX to VVIX Ratio']:.2f}')

plt.axvline(vix_over_vvix_stats.loc['mean + 1 std']['High VIX_to_VVIX_Ratio'l,,
—~color='green', linestyle='dashed', linewidth=1, label=f'High Mean + 1 std:
o{vix_over_vvix_stats.loc['mean + 1 std']['High_VIX_to_VVIX_Ratio'l]:.2f}')

plt.axvline(vix_over_vvix_stats.loc['mean + 1 std']['Low_VIX_to_VVIX_Ratio'l,,
~color='green', linestyle='solid', linewidth=1, label=f'Low Mean + 1 std:
+{vix_over_vvix_stats.loc['mean + 1 std']['Low_VIX_to_VVIX_Ratio']:.2f}')

plt.axvline(vix_over_vvix_stats.loc['mean + 2 std']['High_ VIX_to_VVIX_Ratio'],.
~color='orange', linestyle='dashed', linewidth=1, label=f'High Mean + 2 std:
~{vix_over_vvix_stats.loc['mean + 2 std']['High_VIX_to_VVIX_Ratio'l:.2f}')

plt.axvline(vix_over_vvix_stats.loc['mean + 2 std']['Low_VIX_to_VVIX_Ratio'],,
—~color="'orange', linestyle='solid', linewidth=1, label=f'Low Mean + 2 std:
~{vix_over_vvix_stats.loc['mean + 2 std']['Low VIX to VVIX Ratio']:.2f}')

plt.axvline(vix_over_vvix_stats.loc['mean + 3 std']['High VIX_to_VVIX_Ratio'l,,
—~color="black', linestyle='dashed', linewidth=1, label=f'High Mean + 3 std:
~{vix_over_vvix_stats.loc['mean + 3 std']['High_VIX_to_VVIX_Ratio'l]:.2f}')

plt.axvline(vix_over_vvix_stats.loc['mean + 3 std']['Low_VIX_to_VVIX_Ratio'],,
~color="black', linestyle='solid', linewidth=1, label=f'Low Mean + 3 std:
+{vix_over_vvix_stats.loc['mean + 3 std']['Low_VIX_to_VVIX_Ratio']:.2f}')

o1

plt.axvline(vix_over_vvix_stats.loc['mean + 4 std']['High_ VIX_to_VVIX_Ratio'l,
~color='yellow', linestyle='dashed', linewidth=1, label=f'High Mean + 4 std:
w{vix_over_vvix_stats.loc['mean + 4 std']['High_VIX_to_VVIX_Ratio'l:.2f}')

plt.axvline(vix_over_vvix_stats.loc['mean + 4 std']['Low_VIX_to_VVIX_Ratio'],,
~color='yellow', linestyle='solid', linewidth=1, label=f'Low Mean + 4 std:.
w{vix_over_vvix_stats.loc['mean + 4 std']['Low_VIX_to_VVIX_Ratio']:.2f}')

Set X azis

x_tick_spacing = 0.05 # Specify the interval for y-azis ticks
plt.gca() .xaxis.set_major_locator(MultipleLocator(x_tick_spacing))
plt.xlabel ("VIX/VVIX", fontsize=10)

plt.xticks(rotation=0, fontsize=8)

Set Y azis

y_tick_spacing = 25 # Specify the interval for y-azis ticks
plt.gca() .yaxis.set_major_locator (MultipleLocator(y_tick_spacing))
plt.ylabel("# Of Datapoints", fontsize=10)

plt.yticks(fontsize=8)

Set title, layout, grid, and legend

plt.title("CBOE VIX/VVIX Histogram (200 Bins)", fontsize=12)
plt.tight_layout ()

plt.grid(True, linestyle='--', alpha=0.7)
plt.legend(fontsize=9)

Save figure and display plot
plt.savefig("03_Histogram+Mean+SD.png", dpi=300, bbox_inches="tight")
plt.show()

CBOE VIX/VVIX Histogram (200 Bins)

B High_VIX_to_WVIX_Ratio
[Low_VIX_to_VVIX_Ratio
--- High Mean - 1 std: 0.13
—— Low Mean - 1 std: 0.12
=== High Mean: 0.22
—— Low Mean: 0.21
--- High Mean + 1 std: 0.31
—— Low Mean + 1 std: 0.29
High Mean + 2 std: 0.40
Low Mean + 2 std: 0.37
---- High Mean + 3 std: 0.50
—— Low Mean + 3 std: 0.45
High Mean + 4 std: 0.59
Low Mean + 4 std: 0.53

150 o

=
o]
il

Of Datapoints
=
g

VIXVVIX

52

1.11.2 Historical Data - VIX/VVIX

[70]: plot_timeseries(
price_df=vix_over_vvix,
plot_start_date=None,
plot_end_date="2016-12-31",
plot_columns=["High VIX_ to_VVIX_Ratio", "Low_VIX_to_VVIX_Ratio"],
title="CBOE VIX/VVIX, 2007 - 2016",
x_label="Date",
x_format="Year",
y_label="VIX/VVIX",
y_format="Decimal",
y_format_decimal_places=2,
y_tick_spacing=0.10,
grid=True,
legend=True,
export_plot=True,
plot_file_name="03_VIX_Over_VVIX_Plot_2007-2016",

CBOE VIX/VWVIX, 2007 - 2016

—— High_VIX_to_VVIX_Ratio
0.80 A | —— Low_VIX_to_VVIX_Ratio

0.70 1

0.60 1

0.50 1

VIX/VVIX

0.40 \ |
0.301

0.20

0.104

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
Date

[71]: plot_timeseries(
price_df=vix_over_vvix,
plot_start_date="2017-01-01",
plot_end_date=None,
plot_columns=["High VIX_to_VVIX_Ratio", "Low_VIX_to_VVIX_Ratio"],

53

title="CBOE VIX/VVIX, 2017 - Present",
x_label="Date",

x_format="Year",

y_label="VIX/VVIX",
y_format="Decimal",
y_format_decimal_places=2,
y_tick_spacing=0.10,

grid=True,

legend=True,

export_plot=True,
plot_file_name="03_VIX_Over_VVIX_Plot_2017-Present",

CBOE VIX/VVIX, 2017 - Present

0.50 1 —— High_VIX_to_VWVIX_Ratio
— Low_VIX_to_WWIX_Ratio
0.40
x
5; 0.30
x
>
g
0.20
0.10 1

2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
Date

[72]: plot_timeseries(
price_df=vix_over_vvix,
plot_start_date="2024-01-01",
plot_end_date=None,
plot_columns=["High VIX_to_VVIX_Ratio", "Low_VIX_to_VVIX_Ratio"],
title="CBOE VIX/VVIX, 2024 - Present",
x_label="Date",
x_format="Month",
y_label="VIX/VVIX",
y_format="Decimal",
y_format_decimal_places=2,
y_tick_spacing=0.05,

54

grid=True,

legend=True,

export_plot=True,
plot_file_name="03_VIX_Over_VVIX_Plot_2024-Present",

CBOE VIX/VVIX, 2024 - Present

—— High_VIX_to_VWVIX_Ratio
0.35 A —— Low_VIX_to_VVIX_Ratio

0.304

o

i

w
|

VIX/VVIX

0.20

0.15 4

0.104

Decjlhﬁm‘ IM’E&W‘ I }IEGZJIIII Wﬁm 2022078620 'am' ‘WI I ;IﬁﬂZ]ﬂIII W&I&W RAIOTEO ‘ﬁﬁMZ‘EO%
Date

[73]: plot_timeseries(
price_df=vix_over_vvix,
plot_start_date="2025-01-01",
plot_end_date=None,
plot_columns=["High VIX_to_VVIX_Ratio", "Low_VIX_to_VVIX_Ratio"],
title="CBOE VIX/VVIX, 2025 - Present",
x_label="Date",
x_format="Month",
y_label="VIX/VVIX",
y_format="Decimal",
y_format_decimal_places=2,
y_tick_spacing=0.05,
grid=True,
legend=True,
export_plot=True,
plot_file_name="03_VIX_Over_VVIX_Plot_2025-Present",

95

CBOE VIX/VVIX, 2025 - Present

—— High_VIX_to_VVIX_Ratio
0.35 A —— Low_VIX_to_VVIX_Ratio

0.30 -

0.25 4

VIX/VVIX

0.20 1

0.151

Jan 2025eb 20Mar 2028pr 20May 2020 202ul 2028ug 20Zep 2023t 20280y 20Tkec 2020 2026eb 2026
Date

1.11.3 Stats By Year - VIX/VVIX

[74]: | # plot_stats(

stats_df=vviz_stats_by_year,
plot_columns=["Open_mean", "High_mean", "Low_mean", "Close_mean'],
title="VVIX Mean OHLC By Year",
z_label="Year",

z_rotation=45,

z_tick_spacing=1,

y_label="Price",

y_tick_spacing=5,

grid=True,

legend=True,

export_plot=True,
plot_file_name="02_VVIX_Stats_By_Year"

FHOWH W R R ORE OB W OW R R R R

1.11.4 Stats By Month - VIX/VVIX

[75]1: # plot_stats(
stats_df=vviz_stats_by_month,
plot_columns=["Open_mean", "High_mean", "Low_mean", "Close_mean'],
title="VVIX Mean OHLC By Month",
z_label="Month",
z_rotation=0,

56

z_tick_spacing=1,

y_label="Price",

y_tick_spacing=1,

grid=True,

legend=True,

export_plot=True,
plot_file_name="02_VVIX_Stats_By Month"

HOH R R R W W R

1.12 Investigating A Signal
1.12.1 Determining A Spike Level

[76]: # Define the spike multiplier for detecting significant spikes
spike_level = 1.25

#_
Simple Moving Averages (SMA)
#_ .

Calculate 10-period SMA of 'High'
vix['High SMA_10'] = vix['High'].rolling(window=10) .mean()

Shift the 10-pertiod SMA by 1 to compare with current 'High'
vix['High_SMA_10_Shift'] = vix['High_SMA_10'].shift(1)

Calculate the spike level based on shifted SMA and spike multiplier
vix['Spike_Level SMA'] = vix['High SMA_10_Shift'] * spike_level

Calculate 20-period SMA of 'High'
vix['High SMA_20'] = vix['High'].rolling(window=20) .mean()

Determine if 'High' exceeds the spike level (indicates a spike)
vix['Spike_SMA'] = vix['High'] >= vix['Spike_Level SMA']

Calculate 50-period SMA of 'High' for trend analysis
vix['High_SMA_50'] = vix['High'].rolling(window=50) .mean()

#_
Ezponential Moving Averages (EMA)
#— —_——

Calculate 10-period EMA of 'High'
vix['High EMA_10'] = vix['High'].ewm(span=10, adjust=False) .mean()

Shift the 10-pertiod EMA by 1 to compare with current 'High'
vix['High EMA_10_Shift'] = vix['High EMA_10'].shift(1)

o7

Calculate the spike level based on shifted EMA and spike multiplier
vix['Spike_Level _EMA'] = vix['High EMA_10_Shift'] * spike_level

Calculate 20-period EMA of 'High'
vix['High EMA_20'] = vix['High'].ewm(span=20, adjust=False).mean()

Determine if 'High' exzceeds the spike level (indicates a spike)
vix['Spike EMA'] = vix['High'] >= vix['Spike_Level EMA']

Calculate 50-period EMA of 'High' for trend analysts
vix['High EMA_50'] = vix['High'].ewm(span=50, adjust=False).mean()

[77]: display(vix)

Close High Low Open High SMA_ 10 High SMA_10_Shift \

Date
1990-01-02 17.24 17.24 17.24 17.24 NaN NaN
1990-01-03 18.19 18.19 18.19 18.19 NaN NaN
1990-01-04 19.22 19.22 19.22 19.22 NaN NaN
1990-01-05 20.11 20.11 20.11 20.11 NaN NaN
1990-01-08 20.26 20.26 20.26 20.26 NaN NaN
2026-01-20 20.09 20.99 18.64 19.94 16.74 16.17
2026-01-21 16.90 20.81 16.67 19.31 17.30 16.74
2026-01-22 15.64 16.67 15.27 16.65 17.42 17.30
2026-01-23 16.09 16.21 15.30 15.68 17.46 17.42
2026-01-26 16.15 17.39 15.80 16.90 17.62 17.46
Spike_Level _SMA High SMA_ 20 Spike_SMA High SMA_50 High EMA_10 \
Date
1990-01-02 NaN NaN False NaN 17.24
1990-01-03 NaN NaN False NaN 17.41
1990-01-04 NaN NaN False NaN 17.74
1990-01-05 NaN NaN False NaN 18.17
1990-01-08 NaN NaN False NaN 18.55
2026-01-20 20.21 15.88 True 18.32 17.17
2026-01-21 20.93 16.10 False 18.33 17.83
2026-01-22 21.63 16.17 False 18.21 17.62
2026-01-23 21.78 16.26 False 18.15 17.36
2026-01-26 21.82 16.42 False 18.14 17.37
High EMA_10_Shift Spike_Level EMA High EMA_20 Spike_EMA \
Date
1990-01-02 NaN NaN 17.24 False
1990-01-03 17.24 21.55 17.33 False
1990-01-04 17.41 21.77 17.51 False

o8

1990-01-05 17.74 22.18 17.76 False

1990-01-08 18.17 22.71 18.00 False

2026-01-20 16.32 20.40 16.80 True

2026-01-21 17.17 21.46 17.18 False

2026-01-22 17.83 22.29 17.13 False

2026-01-23 17.62 22.03 17.04 False

2026-01-26 17.36 21.71 17.08 False
High_EMA_50

Date

1990-01-02 17.24

1990-01-03 17.28

1990-01-04 17.35

1990-01-05 17.46

1990-01-08 17.57

2026-01-20 17.45

2026-01-21 17.59

2026-01-22 17.55

2026-01-23 17.50

2026-01-26 17.49

[9083 rows x 16 columns]

[78]: |vix[vix['High'] >= 50]

[78]: Close High Low Open High SMA_10 High SMA_10_Shift \

Date

2008-10-06 52.05 58.24 45.12 45.12 42.92 40.52
2008-10-07 53.68 54.19 47.03 52.05 44.73 42.92
2008-10-08 57.53 59.06 51.90 53.68 46.97 44.73
2008-10-09 63.92 64.92 52.54 57.57 49.94 46.97
2008-10-10 69.95 76.94 65.63 65.85 53.99 49.94
2024-08-05 38.57 65.73 23.39 23.39 23.84 18.95
2025-04-07 46.98 60.13 38.58 60.13 28.60 24 .51
2025-04-08 52.33 57.52 36.48 44.04 32.58 28.60
2025-04-09 33.62 57.96 31.90 50.98 36.47 32.58
2025-04-10 40.72 54.87 34.44 34.44 40.03 36.47

Spike_Level SMA High SMA 20 Spike_SMA High SMA_50 High EMA_10 \

Date

2008-10-06 50.65 37.24 True 28.17 44 .33
2008-10-07 53.65 38.66 True 28.76 46.12
2008-10-08 55.91 40.34 True 29.46 48.47
2008-10-09 58.71 42.27 True 30.31 51.46

99

[79]:

2008-10-10

2024-08-05
2025-04-07
2025-04-08
2025-04-09
2025-04-10

Date

2008-10-06
2008-10-07
2008-10-08
2008-10-09
2008-10-10

2024-08-05
2025-04-07
2025-04-08
2025-04-09
2025-04-10

Date

2008-10-06
2008-10-07
2008-10-08
2008-10-09
2008-10-10

2024-08-05
2025-04-07
2025-04-08
2025-04-09
2025-04-10

62.
23.
30.
35.

40.
45.

42

69
63
76
72
59

44 .

19.
26.
27.
29.
30.

79

11
10
50
05
49

True

True
True
True
True
True

31.

15.
22.
23.
23.
24.

39

66

35
05
84
58

High EMA_10_Shift Spike_Level EMA High EMA 20 Spike_EMA

High_EMA_50

31.
32.
33.
34.
36.

65
53
57
80
46
17.
23.
25.

26.
27.

62
95
27
55
66

[97 rows x 16 columns]

Ensure the index 12s a Datetimelndex
vix.index =

Create a new column for the year extracted from the date indezx

vix['Year']

41.
44 .
46.
48.
51.
19.
27.
33.

37.
41.

24
33
12
47
46

66
72
61
96
60

1.12.2 Spike Counts (Signals) By Year

pd.to_datetime(vix.index)

= vix.index.year

24.
34.
42,
47.
51.

51.
55.
57.
60.
64.

60

55
41
65
59
33

58
65
01
45
99

38.
40.
42.
44 .
4a7.

22.
28.
31.
33.
35.

82
29
07
25
36

15

48
25
79
80

True
False
True
True
True

True
True
True
True
True

56.

28.
33.
37.
41.
44,

10

04
61
96
60
01

Group by year and the "Spike_SMA" and "Spike_EMA" columns,

< 0CCUTTences

spike_count_SMA = vix.groupby(['Year', 'Spike_SMA']).size().
~unstack(fill_value=0)

display(spike_count_SMA)

Spike_SMA False

Year
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026

248
249
250
251
243
252
248
247
243
250
248
240
248
251
250
250
242
239
238
249
239
240
248
249
235
240
234
244
228
241
224
235
239
246
237
231

15

True

O NN D00 P NO©OO”OO” O ON D PO

= = =N~ N = = =
= O OO NN O~ WN0NNWNNWWOON

61

then count,

[80]: | # Copy this <!-- INSERT 08_Spike_Counts_HERE --> to index_temp.md
export_track_md_deps(dep_file=dep_file, md_filename="08_Spike_Counts.md",
~content=spike_count_SMA.to_markdown())

Exported and tracked: 08_Spike_Counts.md

[81]: | # Ensure the index is a Datetimelndex
vix.index = pd.to_datetime(vix.index)

Create a new column for the year extracted from the date indezx
vix['Year'] = vix.index.year

Group by year and the "Spike_SMA" and "Spike_EMA" columns, then county
woccurrences

spike_count_EMA = vix.groupby(['Year', 'Spike EMA']).size().
wunstack(fill_value=0)

display(spike_count_EMA)

Spike_EMA False True

Year

1990 247 6
1991 251 2
1992 253 1
1993 251 2
1994 247 5
1995 252 0
1996 252 2
1997 250 3
1998 246 6
1999 250 2
2000 250 2
2001 241 7
2002 250 2
2003 251 1
2004 251 1
2005 250 2
2006 248 3
2007 242 9
2008 240 13
2009 251 1
2010 243 9
2011 242 10
2012 250 0
2013 250 2
2014 236 16
2015 243 9
2016 238 14

62

2017 244 7

2018 230 21
2019 242 10
2020 228 25
2021 239 13
2022 244 7
2023 248 2
2024 244 8
2025 236 14
2026 15 1

[82]: # Plotting
plt.figure(figsize=(12, 6), facecolor="#F5F5F5")

Bar positions
x = np.arange(len(spike_count_SMA[True] .index))
width = 0.35

Plot SMA bars
plt.bar(x - width / 2, spike_count_SMA[True] .values, width, color="steelblue",
~label="Spike Counts Using SMA")

Plot EMA bars
plt.bar(x + width / 2, spike_count_EMA[True] .values, width,
wcolor="forestgreen", label="Spike Counts Using EMA")

Set X azis

x_tick_spacing = 5 # Specify the interval for y-azis ticks

plt.gca().zazis.set_major_locator(MultipleLocator(z_tick_spacing))
plt.xlabel("Year", fontsize=10)

plt.xticks(x, spike_count_SMA[True].index, rotation=45, fontsize=8)
plt.x1im(x[0] - 2 * width, x[-1] + 2 * width)

Set Y azis

y_tick_spacing = 2 # Specify the interval for y-azis ticks
plt.gca() .yaxis.set_major_locator(MultipleLocator(y_tick_spacing))
plt.ylabel("Count", fontsize=10)

plt.yticks(fontsize=8)

Set title, layout, grid, and legend
plt.title("Yearly Totals Of Spike Counts", fontsize=12)
plt.tight_layout ()

plt.grid(True, linestyle='--', alpha=0.7)
plt.legend(fontsize=9)

Save figure and display plot
plt.savefig("08_Spike_Counts.png", dpi=300, bbox_inches="tight")

63

plt.show()

Yearly Totals Of Spike Counts

T Spike Counts Using SMA
28 | EEE Spike Counts Using EMA

Count

o " 43] 9 o D D] ol 24 1 i = ' o Al < d o -3 ‘s 2 B] o A \:J] o g v %l B el o
I I g g P g L G P L o
Year

1.12.3 Spike Counts (Signals) Plots By Year

[83]: def vix_plot(start_year, end_year):
Start and end dates
start_date = start_year + '-01-01'
end_date = end_year + '-12-31'

Create temporary dataframe for the specified date Tange
vix_temp = vix[(vix.index >= start_date) & (vix.index <= end_date)]

Plotting
plt.figure(figsize=(12, 6), facecolor="#F5F5F5")

Plot data

plt.plot(vix_temp.index, vix_temp['High'], label='High', linestyle='-"',,
~color="'steelblue', linewidth=1)

plt.plot(vix_temp.index, vix_temp['Low'], label='Low', linestyle='-',

<~color="brown', linewidth=1)
plt.plot(vix_temp.index, vix_temp['High SMA_10'], label='10 Day High SMA',

~linestyle='-', color='red', linewidth=1)

plt.plot(vix_temp.index, vix_temp['High SMA_20'], label='20 Day High SMA',
~linestyle='-', color='orange', linewidth=1)

plt.plot(vix_temp.index, vix_temp['High SMA_50'], label='50 Day High SMA',
~linestyle='-', color='green', linewidth=1)

64

plt.scatter(vix_temp[vix_temp['Spike_SMA'] == True].index,
~vix_temp[vix_temp['Spike_SMA'] == True] ['High'], label='Spike (High > 1.25 %
10 Day High SMA)', linestyle='-', color='black', s=20)

Set X azis

plt.gca() .xaxis.set_major_locator(mdates.MonthLocator())

plt.gca() .xaxis.set_major_formatter(mdates.DateFormatter('%b %Y'))
plt.xlabel("Date", fontsize=10)

plt.xticks(rotation=45, fontsize=8)

Set Y azis

y_tick_spacing = 5 # Specify the interval for y-axzis ticks
plt.gca() .yaxis.set_major_locator(MultipleLocator(y_tick_spacing))
plt.ylabel("VIX", fontsize=10)

plt.yticks(fontsize=8)

Set title, layout, grid, and legend

plt.title(f"CBOE Volatility Index (VIX), {start_year} - {end_yearl}",,
~fontsize=12)

plt.tight_layout ()

plt.grid(True, linestyle='--', alpha=0.7)

plt.legend(fontsize=9)

Save figure and display plot

plt.savefig(£"09_VIX_SMA_Spike_{start_year}_{end_year}.png", dpi=300,,
~bbox_inches="tight")

plt.show()

Yearly Plots
[84]: for year in range(1990, 2026):
vix_plot(str(year), str(year))

65

VIX

VIX

CBOE Volatility Index (VIX), 1990 - 1990

35 o

30 4

High

Low

10 Day High SMA

20 Day High SMA

50 Day High SMA

Spike (High > 1.25 * 10 Day High SMA)

25 4
20 4
15 4
T T T T T T T T T T T
o o o o o $ o o o o .
Nf» V‘{; ‘\?o; ‘@9 {p \9% N,;F ";P o x‘”o’ \qa ‘&q {,p
& & « © < ¥ « o < g ¢
Date
CBOE Volatility Index (VIX), 1991 - 1991
~—— High
x5 — Low
—— 10 Day High SMA
20 Day High SMA
—— 50 Day High SMA
e Spike (High = 1.25 * 10 Day High SMA)
30 4
25 4
20 4

15 4

66

CBOE Volatility Index (VIX), 1992 - 1992

=l High

VIX

— Low
—— 10 Day High SMA
~—— 20 Day High SMA
—— 50 Day High SMA
e Spike (High > 1.25 * 10 Day High SMA)

CBOE Volatility Index (VIX), 1993 - 1993

VIX

—— High
— low
—— 10 Day High SMA
——— 20 Day High SMA
—— 50 Day High SMA
e Spike (High > 1.25 * 10 Day High SMA)

67

CBOE Volatility Index (VIX), 1994 - 1994

A,
L?
e
% 2 s
=& ES ==
! [F -
%, & 5 =
R o T *J
% — . S
= a —_— <t
>
S 2
=) %
%5 = x q
L <
Y, (6 o ==~
£ = B,
= £ c
555
2 T IS
= P L
Blcg:8838¢ j
Y, W 3283 &
sl =
w —%
T VA
% 4

68

XIA XIA

VIX

VIX

CBOE Volatility Index (VIX), 1996 - 1996

25 4

—— High
— Low
—— 10 Day High SMA
20 Day High SMA
—— 50 Day High SMA
e Spike (High > 1.25 * 10 Day High SMA)

20 4
15 4
T T T T T T T T T T T
e o o $ o o A
& @n?’ & & & «,“dﬂ «i’* & \Qd’ & K
< & -« « v ¥ « o < o ¢
Date
CBOE Volatility Index (VIX), 1997 - 1997
50
~—— High
— Low
—— 10 Day High SMA
&) 20 Day High SMA
—— 50 Day High SMA
e Spike (High > 1.25 * 10 Day High SMA)
a0
35 4

30 4

25 o

20

15 4

69

CBOE Volatility Index (VIX), 1998 - 1998

CBOE Volatility Index (VIX), 1999 - 1999

70

VIX
N

VIX

CBOE Volatility Index (VIX), 2000 - 2000

5 T
—— High

— Low

—— 10 Day High SMA

~—— 20 Day High SMA

—— 50 Day High SMA
e Spike (High > 1.25 * 10 Day High SMA)

& & < $ & & o & s ”
A G A 0 F F 5 5 ’L A 0 F A
& & & & o N ¥ #° o & & s ¢
Date
CBOE Volatility Index (VIX), 2001 - 2001
—— High
— Low

—— 10 Day High SMA
——— 20 Day High SMA
—— 50 Day High SMA

e Spike (High > 1.25 * 10 Day High SMA)

> > o o > & > > > &
il + ('\FB A+ _“L° Gl A Q'\.@ & & éﬂ,@ A i
b & & & & N $ < o & K o b
Date

71

VIX

VIX

50

45 4

359

30 4

25 o

20 4

35 o

30 4

25 4

20 4

15 4

CBOE Volatility Index (VIX}), 2002 - 2002

—— High

— Low

—— 10 Day High SMA

-~ 20 Day High SMA

—— 50 Day High SMA
e Spike (High > 1.25 * 10 Day High SMA}

& o & 5 3 a o & &
& & & E & & & & & & &
< & & ey - \9" & oy o a ' & ¢
Date
CBOE Volatility Index (VIX), 2003 - 2003
—— High
— Low

—— 10 Day High SMA
——— 20 Day High SMA
—— 50 Day High SMA

o Spike (High > 1.25 * 10 Day High SMA)

T ; T
» »)
K Q’LEP A .
3§ = o o
Date

72

VIX

VIX

CBOE Volatility Index (VIX), 2004 - 2004

73

VIX

VIX

CBOE Volatility Index (VIX), 2006 - 2006

20

15 o

10 4

High

Low

10 Day High SMA

20 Day High SMA

50 Day High SMA

Spike (High > 1.25 * 10 Day High SMA)

CBOE Volatility Index (VIX), 2007 - 2007

354

30 4

25 4

20

15 4

10 4

High

Low

10 Day High SMA

20 Day High SMA

50 Day High SMA

Spike (High = 1.25 * 10 Day High SMA}

74

VIX

VIX

CBOE Volatility Index (VIX), 2008 - 2008

90 4 —— High
— Low
85 4 .
—— 10 Day High SMA
80 20 Day High SMA
—— 50 Day High SMA
751 o Spike (High > 1.25 * 10 Day High SMA)
70 4
65
60 4
55 4
50 4
45 o
a0
35 4
30 4
25 4
20 4
15 4
T T T T T T T T T T T T T
'\P& '»"b‘b '»“Sb w@g '»"& '\9‘? x‘& '9@ m“é’ w°°% w"& ﬂ?ee m"oq
L o «© o « < ¥ = o+ o S & &
Date
CBOE Volatility Index (VIX), 2009 - 2009
—— High
60 4 — Low
—— 10 Day High SMA
20 Day High SMA
55 —— 50 Day High SMA
Spike (High > 1.25 * 10 Day High SMA)
50 4
a5 o
a0

35 4

30 4

25 4

20 4

o o o o ® o o
& 'FBE, e < <~ il e & - & & '15’ee o+
s > S
L & * & & ¥ ¥ & o 3 & <«
Date

75

VIX

VIX

CBOE Volatility Index (VIX), 2010 - 2010

45

—— High
— Low
—— 10 Day High SMA
20 Day High SMA
—— 50 Day High SMA
e Spike (High > 1.25 * 10 Day High SMA)

a0
35 4
30 4
25 4
20 4
15 4
T T T T T T T T T T T T T
'\9‘\9 '\Pﬂ? '»“9 'L“le '@9 § \'\‘“"'Q '\9‘\9 w&a ﬁ;\g 'P\Q w“'& s
¢ & « vQ‘ & < A « o Cx < & ¢
Date
CBOE Volatility Index (VIX), 2011 - 2011
~—— High
— Low
45 4 —— 10 Day High SMA
20 Day High SMA
—— 50 Day High SMA
T e Spike (High = 1.25 * 10 Day High SMA)

354

30 4

25 o

20

15 4

i i
> > > > > 3 > > o > o > &
& & & & & & & o & S & & &
Rl - & > ' &
L & & vd' & + ¥ o o f & o ¢
Date

76

CBOE Volatility Index (VIX), 2012 - 2012

77

VIX

VIX

CBOE Volatility Index (VIX), 2014 - 2014

30 4

254

High

Low

10 Day High SMAa

20 Day High SMA

50 Day High SMA

Spike (High > 1.25 * 10 Day High SMA)

20 4
15 4
10
T T T : : : : : T : T T T
’15;\? & 1“«? 15\,‘” “9&" "9\?‘ ’L“"h oL 'ﬁ\" 1@? ¢°\h ‘_ﬁ;»‘ ’159‘,”
& & & o & ¥ o s & & o ¢
Date
CBOE Volatility Index (VIX), 2015 - 2015
55
~—— High
— Low
50 4 —— 10 Day High SMA
20 Day High SMA
—— 50 Day High SMA
57 e Spike (High > 1.25 * 10 Day High SMA)
a0 4
35 4

30

254

20

15 4

10

78

VIX

VIX

CBOE Volatility Index (VIX), 2016 - 2016

—— 50 Day High SMA
e Spike (High > 1.25 * 10 Day High SMA)

79

VIX

CBOE Volatility Index (VIX), 2018 - 2018

50 4

45 4

354

30 4

25 4

20 4

15 4

10 4

High

Low

10 Day High SMA

20 Day High SMA

50 Day High SMA

Spike (High > 1.25 * 10 Day High SMA)

CBOE Volatility Index (VIX), 2019 - 2019

30 4

25 4

20 4

15 4

High

Low

10 Day High SMA

20 Day High SMA

50 Day High SMA

Spike (High = 1.25 * 10 Day High SMA)

80

VIX

VIX

CBOE Volatility Index (VIX), 2020 - 2020

85 4

80

75 4

70

[

60 -

55 4

50

5

354

30

254

20 4

15 4

10 4

—— High
— Low
—— 10 Day High SMA
20 Day High SMA
—— 50 Day High SMA
e Spike (High > 1.25 * 10 Day High SMA)

CBOE Volatility Index (VIX), 2021 - 2021

35 4

30

25 4

20 4

15 4

—— High
— Low
—— 10 Day High SMA
20 Day High SMA
—— 50 Day High SMA
e Spike (High = 1.25 * 10 Day High SMA)

:
g " nd 'k " " " " " v " "d v
< & & < & = & & & ol & ol Gl
= S & > & L o
& ¥ + « < ¥ e o o & oF A4
Date

81

VIX

VIX

CBOE Volatility Index (VIX), 2022 - 2022

CBOE Volatility Index (VIX), 2023 - 2023

82

CBOE Volatility Index (VIX), 2024 - 2024

e —— High
— Low
50 —— 10 Day High SMA
i 20 Day High SMA
- —— 50 Day High SMA
1 e Spike (High > 1.25 * 10 Day High SMA)
50 +
45 4
0 4
=
=
ER
30
ER
20
15
10
T T T T T T T T T T T
B b ol B B b B b B o b B el
el < < b < & & & < ol < < &
< s & o
< & & o © « ¥ & o o & & <
Date
CBOE Volatility Index (VIX), 2025 - 2025
60 —— High
— Low
—— 10 Day High SMA
=) 20 Day High SMA
—— 50 Day High SMA
50 e Spike (High > 1.25 * 10 Day High SMA)
a5
40 4
=
> x4
30
ER
20 ﬁ
15 4
T T T
o o o
gV X3 ¥
i » i
¥ & +

1.12.4 Spike Counts (Signals) Plots By Decade

1990 - 1994
[85]: vix_plot('1990', '1994')

83

CBOE Volatility Index (VIX), 1990 - 1994

— High
— Low
—— 10 Day High SMA
20 Day High SMA
—— 50 Day High SMA
e Spike (High > 1.25 * 10 Day High SMA)

354

30 4

25 o 1

x |
= lnll
I.Ju i
20 4) YI | f ¥ i
")) “ A I
M 07 | (AT i :
h N f
b il i I ‘.‘l‘\lg i "J?"\ h L A |00
WYy vy ’ o i
Ty el R TR
- 1 / |
T W)
g iy s A
/) AT
¥ 1‘[“ Vbl
i
10 + . If
i
D00 PO D OO0 L P DD ¥ avar araror orarar arorar ok akal avaral ot ok ot ot ala? o o? o aror ol ol ol ol ol oot el ol ool ob G B 8
BB O P P P PP P By g g gy g ol g gray g grdl oV ok gk avdv el gl gk gl gl gl o o of BIBI07 5%.0) A o ooP o o o o o oP g2 o2 of
R e G G I R GG R RGO el el
<

X
SFEFEF P P S C T F T EF NP B F T SN P ST O W Y S

1995 - 1999
[86]: vix_plot('1995', '1999')

CBOE Volatility Index (VIX), 1995 - 1999

50 4 —— High
— low
—— 10 Day High SMA

—— 50 Day High SMA
@ Spike (High > 1.25 * 10 Day High SMA} e

454 20 Day High SMA 1
354
25 4

20 4

15 4

10 4

k&%%%‘q‘ﬂ"";‘!‘q‘q@‘;hb&:&:bhq&* a}" AN AAD AN AN ’\ﬁ%%'b%%a%,,?lh%dﬁ@:‘bBﬁ‘a‘h")d&daﬂ"t@qﬁﬁb
O O oD B O DS IS D7 520° 0% 00 00 a0 o O R I G P e M SS9\ A° P 0B o0 a8 o B A ey)
PP EF LIS PP PP P L LTS PSP AP I PRP IS P L LIS SIS IS PP DI PEP AT

Y
R G B N S

2000 - 2004
[87]: wvix_plot('2000', '2004')

84

[88]:

[89]:

CBOE Volatility Index (VIX), 2000 - 2004

50 4

5

354

30 4

VIX

254

20 4

15 o

10 4

\l i 'n‘ ’|l._,

—— High
— Low
—— 10 Day High SMA
20 Day High SMA
—— 50 Day High SMA
e Spike (High > 1.25 * 10 Day High SMA)

i 'Kkrw

q° iSSP

A

‘L’!"»’L‘\,’\"\,

v

00§a§c°000§°°°°°° u“&@.‘,a“e S A:P\:Pe" é’e"e" u°u°q° e“e d’ cP“' ¢°°1d3 ,15>° u“n°n° e“e @ d’m°0°c°e°°° o

B
AU AL "lr’\"l"lv’b

AL
SFEEEFE STV v"c’e“"o" e°o" ¥ «‘°\=~‘°‘v°‘\r'\’° it "%’ﬁob e"e" ¥ «i"\ﬂ"??‘,;‘\e" *"’al"o“\"o" & «‘°¢"‘v¢¢'\’° “c’:ﬁo"e"o" S O A e

2005 - 2009
vix_plot('2005', '2009')

Date

CBOE Volatility Index (VIX), 2005 - 2009

a0 4

85 4

80

75 4

70 4

B85

55 4

50

VIX

45

354

30

254

20 4

15

10

High

Low

10 Day High SMA

20 Day High SMA

50 Day High SMA

Spike (High > 1.25 * 10 Day High SMA)

N
S

@;@‘*

L

& S

T —— T
S S
&

T
e
A wwmwmwm'm‘

2010 - 2014
vix_plot('2010', '2014"')

BN CP,LQQ‘J S RE S a“ @h dﬁ& odaeP AN e°,§1° e“ e“ d’ cP Qé\oed-" SNSRI

"l-"lr AL

S
q’ g >
e R A A T «i"\b"\v“‘\r'\?“ °°’=ai°°“ FFEEF I RS

"lr"lr’\r’lv’l'\' ’\,’\,

Date

85

AV

‘
ol b & O G:fa o °
F ST TS SIS SIS T

N ’\» VY ’\'
FEFE EP P SRS E B

SE T @%0“@ TS

CBOE Volatility Index (VIX), 2010 - 2014

50

—— High

— Low

—— 10 Day High SMA

20 Day High SMA
—— 50 Day High SMA

Spike (High > 1.25 * 10 Day High SMA)

Date

45

354

XIA

20
15 4
10 4

2015 - 2019

vix_plot('2015', '2019")

[90]

CBOE Volatility Index (VIX), 2015 - 2019

|
'!.

h
'N‘
A
v

Date

XIA

<<
=
w
=
=
I
>
]
[=} = =y
5 -
* e
AAAE =
Ss= A =
555.; =
555¢ —
IIEQ L
FEEG ==
.m,wDDDm =
S oo o —
T9AR AR —
AR
———
T
e
=
=
T T T T T T T T T
0 o 0 i M 0 o n =
] g @ R “ 8 2l E

2020 - 2024
[91]: vix_plot('2020', '2024')

86

CBOE Volatility Index (VIX), 2020 - 2024

85 4

80

75 4

70 4

[

—— High
— Low
—— 10 Day High SMA
20 Day High SMA
—— 50 Day High SMA
e Spike (High > 1.25 * 10 Day High SMA)
>

2025 - Present
[92]: wvix_plot('2025', '2029')

CBOE Volatility Index (VIX), 2025 - 2029

55

50 4

45

VIX

359

30 4

25 4

20 4

15 4

—— High
— Low
—— 10 Day High SMA
20 Day High SMA
—— 50 Day High SMA
o Spike (High = 1.25 * 10 Day High SMA)

1.13 Trading History
1.13.1 Trades Executed

[93]: # from schwab_order_history import schwab_order_history

87

[94]:

[95] :

[96] :

[97]:

[98]:

*

E3 BHOR OH R KR W H R O OH R R W ®H R W W H R R KRR

**

#

#

from datetime import datetime
tmport pandas as pd
Define your date Tanges
range_2024 = {
"from": "2024-01-01T00:00:00.000Z",
"to": "2024-12-31T23:59:59.000Z",
}
range_2025 = {
"from": "2025-01-01T00:00:00.000Z",
"to": datetime.utcnow().strftime("4Y-/m=-}dT/AH: sM: S.000Z"),
}
Pull both sets of orders
df_2024 = schwab_order_history(
max_results=1000, # or whatever large number you want
from_entered_time=range_2024["from"],
to_entered_time=range_2024["to"],
account_td=None, # or pass your specific encrypted account ID
)
df 2025 = schwab_order_history(
maz_results=1000,
from_entered_time=range_2025["from"],
to_entered_time=range_2025["to"],
account_id=None,
)
Combine the two dataframes
df_all = pd.concat([df 2024, df_2025], ignore_index=True)
df_2024
Filter for symbols that start with "VIX"
df viz = df_all[df_all["symbol"].str.startswith("VIX")].copy()
df_viz = df viz.sort_values(by=['symbol', 'execution_time'], ascending=[True,
True])
af_viz

1.13.2 Trades Executed

Import CSV file of VIX transactions from IRA and Brokerage accounts

vix_transactions_IRA = pd.read_csv(DATA_MANUAL_DIR / "VIX_Transactions_IRA.csv")
vix_transactions_Brokerage = pd.read_excel (DATA_MANUAL_DIR /|,

"VIX_Transactions_Brokerage.xlsx", sheet_name="VIX_Transactions_Brokerage")

88

[99]:

[99]:

Combine the two DataFrames
vix_transactions = pd.concat([vix_transactions_IRA,
ovix_transactions_Brokerage], ignore_index=True)

Drop unnecessary columns
vix_transactions.drop(columns = {'Description'}, inplace=True)

Convert Amount, Price, and Fees & Comm columns to numeric
vix_transactions['Amount'] = vix_transactions['Amount'].replace({'\$': '', '
<''}, regex=True).astype(float)

vix_transactions['Price'] = vix_transactions['Price'].replace({'\$': '', ',':,

<''}, regex=True) .astype(float)

b

1.
o L]

vix_transactions['Fees & Comm'] = vix_transactions['Fees & Comm'].replace({'\$':

o ', Y, "'}, regex=True) .astype(float)

Convert Amount column to absolute values
vix_transactions['Amount'] = abs(vix_transactions['Amount'])

Extract date for option ezpiration with regex (MM/DD/YYYY)

vix_transactions["Exp_Date"] = vix_transactions["Symbol"].str.extract(r'(\d{2}/

-\d{2}/\d{4}H) ")

Ezxtract date for option strike price with regex and convert to float
vix_transactions["Strike_Price"] = vix_transactions["Symbol"].str.
sextract (r' (\d{2}\.\d{2}) ') .astype(float)

Convert ezpiration date and trade date to datetime

vix_transactions["Exp_Date"] = pd.to_datetime(vix_transactions["Exp_Date"],,
sformat="%m/%a/%Y")

vix_transactions['Date'] = pd.to_datetime(vix_transactions['Date'])

Rename date to trade date
vix_transactions.rename(columns={'Date': 'Trade_Date'}, inplace=True)

Sort by Exzp_Date, then Strike_Price, then Trade_Date
vix_transactions.sort_values(by=['Exp_Date', 'Strike_Price', 'Trade_Date'],
~ascending=[True, True, True], inplace=True)

Reset index
vix_transactions.reset_index(drop=True, inplace=True)
vix_transactions

Trade_Date Action Symbol Quantity Price \
0 2024-08-05 Buy to Open VIX 09/18/2024 34.00 P 1 10.95
1 2024-08-21 Sell to Close VIX 09/18/2024 34.00 P 1 17.95
2 2024-08-05 Buy to Open VIX 10/16/2024 40.00 P 1 16.35

89

[100]:

[100] :

59
60
61
62
63

S W N~ O

59
60
61
62
63

2024-09-18
2024-08-07

2025-10-09
2025-08-12
2025-10-08
2025-09-11
2025-10-10

Fees &

NP, PP

10.
10.

9.
10.
10.

.08
.08
.08
.08
.16

81
81
31
81
81

Sell to Close
Buy to Open

Sell to Close
Buy to Open
Sell to Close
Buy to Open
Sell to Close

2069.
3010.
1820.
3910.
4589.

08
92
08
92
16

19
81
69
81
19

[64 rows x 11 columns]

vix_transactions_no_exp
< 'Strike Price'])
vix_transactions_no_exp

S W NN - O

60
61
62
63

S W NN - O

Trade_Date
2024-08-05
2024-08-21
2024-08-05
2024-09-18
2024-08-07

2025-10-09
2025-08-12
2025-10-08
2025-09-11
2025-10-10

Buy to Open
Sell to Close
Buy to Open
Sell to Close
Buy to Open

Sell to Close
Buy to Open
Sell to Close
Buy to Open
Sell to Close

VIX
VIX

VIX
VIX
VIX
VIX
VIX

10/16/2024
11/20/2024

11/19/2025
11/19/2025
11/19/2025
12/17/2025
12/17/2025

34.33
16.50
42.71
18.85
27.11

NaN
15.17
NaN
NaN
NaN

40.
25.
20.
21.
21.

17.
17.

00
00

00
00
00
00
00

Comm Amount Approx_VIX_ Level Comments
1096.
1793.
1636.
2152.
1182.

NaN
NaN
NaN
NaN
NaN

NaN

NaN
NaN
NaN
NaN

1
1
1
1
1

Qo aaQ

Exp_Date
2024-09-18
2024-09-18
2024-10-16
2024-10-16
2024-11-20

20256-11-19
2025-11-19
2025-12-17
2025-12-17

0
0
0
0
0

2025-11-19

21.
.90

WL W

54

.08
.00
.83
.90
.60

Strike_ Price

= vix_transactions.drop(columns=['Exp_Date',

Action

VIX
VIX
VIX
VIX
VIX

VIX
VIX
VIX
VIX
VIX

09/18/2024
09/18/2024
10/16/2024
10/16/2024
11/20/2024

11/19/2025
11/19/2025
11/19/2025
12/17/2025
12/17/2025

Symbol Quantity

34.
34.
40.
40.
25.
20.
21.
21.

17.
17.

00
00
00
00
00

00
00
00
00
00

Fees & Comm Amount Approx_VIX_Level Comments

1.

1.
1.
1.
2.

08 1096.08
08 1793.92
08 1636.08
08 2152.92
16 1182.16

34.
16.
42.
18.
27.

33
50
71
85
11

90

NaN
NaN
NaN
NaN
NaN

P

' 'u ‘0 ‘9

1
1
1
1
1

Qo aaQ

1
1
1
1
2

0
0
0
0
0

Price

10.
17.
16.
21.
.90

Wk, W

95
95
35
54

.08
.00
.83
.90
.60

34.
34.
40.
40.
25.

20.
21.
21.
17.
17.

\

00
00
00
00
00

00
00
00
00
00

59 10.81 2069.19 NaN NaN

60 10.81 3010.81 16.17 NaN
61 9.31 1820.69 NaN NaN
62 10.81 3910.81 NaN NaN
63 10.81 4589.19 NaN NaN

[64 rows x 9 columns]

[101]: | # Copy this <!-- INSERT 10_Trades_FExecuted_HERE --> to index_temp.md
export_track_md_deps(dep_file=dep_file, md_filename="10_Trades_Executed.md",
wcontent=vix_transactions_no_exp.to_markdown(index=False, floatfmt=".2f"))

Exported and tracked: 10_Trades_Executed.md

Volatility In August 2024

[102]: | # Variables to be modifed
esd = "2024-09-18" # Ezpiration Start Date
eed = "2024-12-18" # Ezpiration End Date
tsd = "2024-08-05" # Trade Start Date
ted = "2024-11-27" # Trade End Date
index_number = "11"
x_tick_spacing = 10
y_tick_spacing = 5

HARAAA AR AR AR AR RRRRRRRARAAAAAAA A A A A AR AR AR
Do not modify the code below this line
HAHRAAA AR AR R AR AR RRRRRRRRAAAAAAA A A A AR AR AR

trades, closed_pos, open_pos, per_pnl, pnl, tot_opened_pos_mkt_val,
~tot_closed_pos_mkt_val = calc_vix_trade_pnl(
transaction_df=vix_transactions,
exp_start_date=esd,
exp_end_date=eed,
trade_start_date=tsd,
trade_end_date=ted,

Convert to datetime objects
tsd_dt = datetime.strptime(tsd, "%Y-%m-%d")
ted_dt datetime.strptime(ted, "%Y-Ym-%d")

Adjust the plot start and end dates
plot_start = tsd_dt - timedelta(days=10)
plot_end = ted_dt + timedelta(days=10)

plot_vix_with_trades(

91

vix_price_df=vix,

trades_df=trades,
plot_start_date=plot_start.strftime("/Y-/m-%d"),
plot_end_date=plot_end.strftime ("%Y-%m-%d"),
x_tick_spacing=x_tick_spacing,

y_tick_spacing=y_tick_spacing,
index_number=index_number,
export_plot=True,

print (£"<!--
print (£"<!--
print (£"<!--
print (f"<!--
print(f"<!--
print (f"<!--
export_track

INSERT_{index_number} Closed_Positions_HERE -->")
INSERT_{index_number}_ Open_Positions_HERE -->")
INSERT_{index_number}_Total_Opened_Position_Market_Value HERE -->")
INSERT_{index_number} Total_Closed_Position_Market_Value HERE -->")
INSERT {index_number} PnL_ HERE -->")

INSERT_{index_number}_ Percent_Pnl._HERE -->")

md_deps (dep_file=dep_file,,

omd_filename=f"{index_number} Closed_Positions.md", content=closed_pos.
<to_markdown(index=False, floatfmt=".2f"))
export_track_md_deps(dep_file=dep_file,,

omd_filename=f"{index_number}_ Open_Positions.md", content=open_pos.

«to_markdown(index=False, floatfmt=".2f"))
export_track_md_deps(dep_file=dep_file,,

omd_filename=f"{index_number} Total_Opened_Position_Market_Value.txt",

scontent=tot_opened_pos_mkt_val)

export_track_md_deps(dep_file=dep_file,,
omd_filename=f"{index_number}_Total_ Closed_Position_Market_Value.txt",,
~content=tot_closed_pos_mkt_val)

export_track_md_deps(dep_file=dep_file, md_filename=f"{index_number} PnL.txt",
«content=pnl)

export_track_md_deps(dep_file=dep_file,,
omd_filename=f"{index_number} Percent_PnL.txt", content=per_pnl)

92

[103]:

CBOE Volatility Index (VIX), VIX Spikes, Trades, 2024-07-26 - 2024-12-07

e 4 I —— High
— Low

&1 ” e Trades
\

50 |
\

‘I ﬂ2024-08-05‘ Buy to Open, VIX 10/16/2024 40.00 P, VIX = 42.71
x 404 |
> \

35 4 # LDZ‘I*UE'OS‘ Buy to Open, VIX 09/18/2024 34.00 P, VIX = 34.33
| t024—05—06‘ Buy to Open, VIX 12/18/2024 30.00 P, VIX = 32.275

| o2024-08-07, Buy to Open, VIX 11/20/2024 25.00 P, VIX = 27.11

@ Spike (High > 1.25 * 10 Day High SMA)

[T #2024-11-04, Sell to Close, VIX 11/20/2024 2500 P, VIX = 22 43
|

22024-11-27, Bell to Close, VIX 12/18/2024 30.00 P, VIX = 14.045

<!-- INSERT_11_Closed_Positions_HERE -->
<!-- INSERT_11_Open_Positions_HERE -->

<!-- INSERT_11_Total_Opened_Position_Market_Value_ HERE -->
<!-- INSERT_11 Total_Closed_Position_Market_Value_HERE -->

<!-- INSERT_11 PnL_HERE -->

<!-- INSERT_11 Percent_PnlL._HERE -->
Exported and tracked: 11_Closed_Positions.md
Exported and tracked: 11_Open_Positions.md

Exported and tracked: 11_Total_Opened_Position_Market_Value.txt
Exported and tracked: 11_Total_Closed_Position_Market_Value.txt

Exported and tracked: 11_PnL.txt
Exported and tracked: 11_Percent_PnL.txt

Volatility In March 2025

Variables to be modifed

esd = "2025-04-16" # Ezpiration Start Date
eed = "2025-04-16" # Ezpiration End Date
tsd = "2025-03-04" # Trade Start Date

ted = "2025-03-24" # Trade End Date
index_number = "12"

x_tick_spacing = 2

y_tick_spacing = 2

Do not modify the code below this line
i

trades, closed_pos, open_pos, per_pnl, pnl, tot_opened_pos_mkt_val,
~tot_closed_pos_mkt_val = calc_vix_trade_pnl(

93

transaction_df=vix_transactions,
exp_start_date=esd,
exp_end_date=eed,
trade_start_date=tsd,
trade_end_date=ted,

Convert to datetime objects
tsd_dt = datetime.strptime(tsd, "%Y-%m-%d")
ted_dt datetime.strptime(ted, "%Y-Ym-%d")

Adjust the plot start and end dates
plot_start = tsd_dt - timedelta(days=10)
plot_end = ted_dt + timedelta(days=10)

plot_vix_with_trades(
vix_price_df=vix,
trades_df=trades,
plot_start_date=plot_start.strftime("%Y-%m-%d"),
plot_end_date=plot_end.strftime ("%Y-%m-%d"),
x_tick_spacing=x_tick_spacing,
y_tick_spacing=y_tick_spacing,
index_number=index_number,
export_plot=True,

print (f"<!-- INSERT_{index_numberl}_Closed_Positions_HERE -->")

print (£f"<!-- INSERT_{index_number}_Open_Positions_HERE -->")

print (£"<!-- INSERT_{index_number}_Total_Opened_Position_Market_Value HERE -->")

print (£"<!-- INSERT_{index_number}_Total_Closed_Position_Market_Value_ HERE -->")

print (£"<!-- INSERT_{index_number}_ Pnl_HERE -->")

print (£"<!-- INSERT_{index_number}_ Percent_Pnl._HERE -->")

export_track_md_deps(dep_file=dep_file,,
omd_filename=f"{index_number} Closed_Positions.md", content=closed_pos.
~to_markdown(index=False, floatfmt=".2f"))

export_track_md_deps(dep_file=dep_file,,
~md_filename=f"{index_number}_Open_Positions.md", content=open_pos.
«to_markdown(index=False, floatfmt=".2f"))

export_track_md_deps(dep_file=dep_file,,
omd_filename=f"{index_number}_Total_Opened_Position_Market_Value.txt",
—content=tot_opened_pos_mkt_val)

export_track_md_deps(dep_file=dep_file,,
omd_filename=f"{index_number} Total_Closed_Position_Market_ Value.txt",,
«content=tot_closed_pos_mkt_val)

export_track_md_deps(dep_file=dep_file, md_filename=f"{index_number} PnL.txt",
~content=pnl)

94

export_track_md_deps(dep_file=dep_file,,
~md_filename=f"{index_number} Percent_ PnL.txt", content=per_pnl)

CBOE Volatility Index (VIX), VIX Spikes, Trades, 2025-02-22 - 2025-04-03

304 — High

— Low T
e Spike (High = 1.25 * 10 Day High SMA) f
e Trades

26 4

20 4

5 25.00 P, VIX = 18.01

<!-- INSERT_12 Closed_Positions_HERE -->

<!-- INSERT_12_Open_Positions_HERE -->

<!-- INSERT_12_Total_Opened_Position_Market_Value_HERE -->

<!-- INSERT_12_Total_Closed_Position_Market_Value_HERE -->

<!-- INSERT_12_ PnL._HERE -->

<!-- INSERT_12_Percent_PnlL_HERE -->
Exported and tracked: 12_Closed_Positions.md
Exported and tracked: 12_Open_Positions.md
Exported and tracked: 12_Total_Opened_Position_Market_Value.txt
Exported and tracked: 12_Total_Closed_Position_Market_Value.txt
Exported and tracked: 12_PnL.txt
Exported and tracked: 12_Percent_PnL.txt

Volatility In April 2025

[104]: # Variables to be modifed
esd = "2025-05-21" # Ezpiration Start Date
eed = "2025-08-20" # Ezpiration End Date
tsd = "2025-03-10" # Trade Start Date
ted = "2025-05-13" # Trade End Date
index_number = "13"
x_tick_spacing 5
y_tick_spacing = 5

Do not modify the code below this line

95

HERRRARRAR AR RABRARARRAGRRRRARRHGRRRARRHR AR RH

trades, closed_pos, open_pos, per_pnl, pnl, tot_opened_pos_mkt_val,
~tot_closed_pos_mkt_val = calc_vix_trade_pnl(
transaction_df=vix_transactions,
exp_start_date=esd,
exp_end_date=eed,
trade_start_date=tsd,
trade_end_date=ted,

Convert to datetime objects
tsd_dt = datetime.strptime(tsd, "%Y-%m-%d")
ted_dt datetime.strptime(ted, "%Y-Ym-%d")

Adjust the plot start and end dates
plot_start = tsd_dt - timedelta(days=10)
plot_end = ted_dt + timedelta(days=10)

plot_vix_with_trades(
vix_price_df=vix,
trades_df=trades,
plot_start_date=plot_start.strftime("%Y-%m-%d"),
plot_end_date=plot_end.strftime ("%Y-%m-%d"),
x_tick_spacing=x_tick_spacing,
y_tick_spacing=y_tick_spacing,
index_number=index_number,
export_plot=True,

print (f"<!-- INSERT_{index_numberl}_Closed_Positions_HERE -->")
print (£"<!-- INSERT_{index_numberl}_Open_Positions_HERE -->")
print (£"<!-- INSERT_{index_number}_Total_Opened_Position_Market_Value HERE -->")
print (£"<!-- INSERT_{index_number}_Total_Closed_Position_Market_Value_ HERE -->")
print (£"<!-- INSERT_{index_number}_ PnlL_HERE -->")
print (£"<!-- INSERT_{index_number}_ Percent_Pnl_HERE -->")
export_track_md_deps(dep_file=dep_file,,
omd_filename=f"{index_number} Closed_Positions.md", content=closed_pos.
~to_markdown(index=False, floatfmt=".2f"))
export_track_md_deps(dep_file=dep_file,,
omd_filename=f"{index_number} Open_Positions.md", content=open_pos.
~to_markdown(index=False, floatfmt=".2f"))
export_track_md_deps(dep_file=dep_file,,
omd_filename=f"{index_number}_Total_Opened_Position_Market_Value.txt",
~content=tot_opened_pos_mkt_val)

96

export_track_md_deps(dep_file=dep_file,,
omd_filename=f"{index_number} Total Closed Position_Market Value.txt",,
«content=tot_closed_pos_mkt_val)

export_track_md_deps(dep_file=dep_file, md_filename=f"{index_number} PnL.txt",
«content=pnl)

export_track_md_deps(dep_file=dep_file,,
omd_filename=f"{index_number}_ Percent_PnL.txt", content=per_pnl)

CBOE Volatility Index (VIX), VIX Spikes, Trades, 2025-02-28 - 2025-05-23

g0 | — High L
— iow N
. e Spike (High > 1.25 * 10 Day High SMA) / o 2025-04-08, Buy to Open, VIX D6/18/2025 27 00 P, VIX = 55 44
1 e Tades | & 20%5-04-07, Buy to Open, VIX 06/18/2025 45.00 P, VIX = 53.65

\
|
\
50 1 ‘f ° 202‘,5-04-07‘ Buy to Open, VIX 08/20/2025 45.00 P, VIX = 48.07
{ |
[* 202%-04-07‘ Buy to Open, VIX 07/16/2025 45.00 P, VIX = 46.17
45 o f ‘-\
\
£ % 2025-04-0@. Buy to Open, VIX 05/21/2025 26.00 P, VIX = 38.88
§285-84:84;\Buy te Bpen; VIX B8/18/2635 36.86 B, VIX = 36.88°

WVIX

35 4

30

1 -04-03, 6O I\X\OI’,‘IEJ‘ZOZS 29.00 P, VIX =29.03
@ 4025-03-10, Buy to Open, VIX US;; 1200 35036000 Buy ko S@ms .@iwwpﬁdﬁgg RIxEP921/2025 26.04 P, VIX = 27.37
| VA
259 f N 4,2025-05-07, Sell to ClPse, VIK 05/21/2025 28.00 P, VIX = 24.52
/. - 20250502, Sell to Close, VIX 05/21§2025 26.00 P, VIX =22.73

20 4 VIX 08/18/2038 28,00 P, VIX lga 4

Il to Elg =
|If to k ke, VIX 05/26/2028 45.00 B, ViX = 1906
15 T -
& & o & > 3 o (3 3 = o] o
‘-)'QW ‘1’65‘: '1’63 ‘19%\ '765 '165} ‘1'6,} '-)Gho %php %ﬁh\ el g %ph_b ‘vph-b ‘-)'Q5 ‘1’0%5: ‘9’06\' ‘19[’\ %’0&,—»
"P’!’ ‘P"’ _‘P’& ‘P"’ _‘P’& _‘P’& ‘P"’ _‘P’& ‘P"’ {v _‘P’& ‘P"’ ﬂP"' "P’!’ ‘P"’ 1@' ‘P"’ ﬂP"'

<!-- INSERT_13_Closed_Positions_HERE -->

<!-- INSERT_13_Open_Positions_HERE -->

<!-- INSERT_13_Total_0Opened_Position_Market_Value_HERE -->

<!-- INSERT_13_Total_Closed_Position_Market_Value_HERE -->

<!-- INSERT_13_PnL_HERE -->

<!-- INSERT_13_Percent_PnlL_HERE -->
Exported and tracked: 13_Closed_Positions.md
Exported and tracked: 13_0Open_Positions.md
Exported and tracked: 13_Total_Opened_Position_Market_Value.txt
Exported and tracked: 13_Total_Closed_Position_Market_Value.txt
Exported and tracked: 13_PnL.txt
Exported and tracked: 13_Percent_PnL.txt

Low Volatility In June, July, August, September, October, November 2025
[105]: # Variables to be modifed

esd = "2025-09-17" # Ezpiration Start Date

eed = "2025-12-31" # Ezpiration End Date

tsd = "2025-06-26" # Trade Start Date

ted = "2025-12-31" # Trade End Date

index_number = "14"

97

I
= O,

x_tick_spacing =
y_tick_spacing

i
Do not modify the code below this line
i

trades, closed_pos, open_pos, per_pnl, pnl, tot_opened_pos_mkt_val,
~tot_closed_pos_mkt_val = calc_vix_trade_pnl(
transaction_df=vix_transactions,
exp_start_date=esd,
exp_end_date=eed,
trade_start_date=tsd,
trade_end_date=ted,

Convert to datetime objects
tsd_dt = datetime.strptime(tsd, "%Y-Ym-%d")
ted_dt = datetime.strptime(ted, "%Y-%m-%d")

Adjust the plot start and end dates
plot_start = tsd_dt - timedelta(days=10)
plot_end = ted_dt + timedelta(days=10)

plot_vix_with_trades(
vix_price_df=vix,
trades_df=trades,
plot_start_date=plot_start.strftime("%Y-%m-%d"),
plot_end_date=plot_end.strftime("%Y-Ym-%d"),
x_tick_spacing=x_tick_spacing,
y_tick_spacing=y_tick_spacing,
index_number=index_number,
export_plot=True,

print (£"<!-- INSERT_{index_number}_Closed_Positions_HERE -->")
print (£"<!-- INSERT_{index_number}_ Open_Positions_HERE -->")
print (f"<!-- INSERT_{index_number}_Total_Opened_Position_Market_Value_ HERE -->")
print (£"<!-- INSERT_{index_number}_Total_Closed_Position_Market_Value HERE -->")
print (f"<!-- INSERT_{index_number}_ PnL_HERE -->")
print (£"<!-- INSERT_{index_numberl}_Percent_PnL_HERE -->")
export_track_md_deps(dep_file=dep_file,,
omd_filename=f"{index_number}_ Closed_Positions.md", content=closed_pos.
«to_markdown(index=False, floatfmt=".2f"))
export_track_md_deps(dep_file=dep_file,,
omd_filename=f"{index_number} Open_Positions.md", content=open_pos.
<to_markdown(index=False, floatfmt=".2f"))

98

export_track_md_deps(dep_file=dep_file,,
omd_filename=f"{index_number}_Total_Opened_Position_Market_Value.txt",
«content=tot_opened_pos_mkt_val)

export_track_md_deps(dep_file=dep_file,,
omd_filename=f"{index_number}_ Total Closed_Position_Market_Value.txt",,
~content=tot_closed_pos_mkt_val)

export_track_md_deps(dep_file=dep_file, md_filename=f"{index_number}_ PnL.txt",

~content=pnl)
export_track_md_deps(dep_file=dep_file,,
-md_filename=f"{index_number} Percent_ PnL.txt", content=per_pnl)

CBOE Volatility Index (VIX), VIX Spikes, Trades, 2025-06-16 - 2026-01-10

29 4 — High

.
274 o

— Low
Spike (High > 1.25 * 10 Day High SMA) | h
Trades

Date

<!-- INSERT_14 Closed_Positions_HERE -->

<!-- INSERT_14_Open_Positions_HERE -->

<!-- INSERT_14_Total_Opened_Position_Market_Value_HERE -->
<!-- INSERT_14_Total_Closed_Position_Market_Value_HERE -->
<!-- INSERT_14_PnL_HERE -->

<!-- INSERT_14_Percent_PnlL_HERE -->

Exported
Exported
Exported
Exported
Exported
Exported

and tracked:
and tracked:
and tracked:
and tracked:
and tracked:
and tracked:

14 _Closed_Positions.md
14_Open_Positions.md
14_Total_Opened_Position_Market_Value.txt
14 _Total_Closed_Position_Market Value.txt
14 _PnL.txt

14 _Percent_PnL.txt

Complete Trade History
[106]: # Variables to be modifed

esd = None

eed = None

99

tsd = None
ted
index_number = "99"

None

Do not modify the code below this line

trades, closed_pos, open_pos, per_pnl, pnl, tot_opened_pos_mkt_val,
~tot_closed_pos_mkt_val = calc_vix_trade_pnl(
transaction_df=vix_transactions,
exp_start_date=esd,
exp_end_date=eed,
trade_start_date=tsd,
trade_end_date=ted,

print (f"<!-- INSERT_{index_numberl}_Closed_Positions_HERE -->")

print (£"<!-- INSERT_{index_number}_Open_Positions_HERE -->")

print (f"<!-- INSERT_{index_numberl}_Total_Opened_Position_Market_Value_ HERE -->")

print (£"<!-- INSERT_{index_number}_Total_Closed_Position_Market_Value_ HERE -->")

print (£"<!-- INSERT_{index_number}_ Pnl_HERE -->")

print (£f"<!-- INSERT_{index_numberl}_Percent_PnL_HERE -->")

export_track_md_deps(dep_file=dep_file,,
omd_filename=f"{index_number}_Closed_Positions.md", content=closed_pos.
«~to_markdown(index=False, floatfmt=".2f"))

export_track_md_deps(dep_file=dep_file,,
~md_filename=f"{index_number}_Open_Positions.md", content=open_pos.
<to_markdown(index=False, floatfmt=".2f"))

export_track_md_deps(dep_file=dep_file,,
omd_filename=f"{index_number}_Total_Opened_Position_Market_Value.txt",
~content=tot_opened_pos_mkt_val)

export_track_md_deps(dep_file=dep_file,,
omd_filename=f"{index_number} Total Closed_ Position_Market Value.txt",,
wcontent=tot_closed_pos_mkt_val)

export_track_md_deps(dep_file=dep_file, md_filename=f"{index_number} PnL.txt",
~content=pnl)

export_track_md_deps(dep_file=dep_file,,
omd_filename=f"{index_number} Percent_PnL.txt", content=per_pnl)

<!-- INSERT_99 Closed_Positions_HERE -->
<!-- INSERT_99_Open_Positions_HERE -->
<!-- INSERT_99_Total_Opened_Position_Market_Value_HERE -->
<!-- INSERT_99_Total_Closed_Position_Market_Value_HERE -->
<!-- INSERT_99 PnL_HERE -->
<!-- INSERT_99_Percent_PnlL_HERE -->

Exported and tracked: 99_Closed_Positions.md

100

[]:

Exported
Exported
Exported
Exported
Exported

and tracked:
and tracked:
and tracked:
and tracked:
and tracked:

99_0Open_Positions.md
99_Total_Opened_Position_Market_Value.txt
99 Total Closed_Position_Market_Value.txt
99_PnL.txt

99 Percent_PnL.txt

101

	Investigating A VIX Trading Signal
	Python Imports
	Add Directories To Path
	Track Index Dependencies
	Python Functions
	Data Overview - VIX
	Acquire CBOE Volatility Index (VIX) Data
	Load Data - VIX
	DataFrame Info - VIX
	Statistics - VIX
	Deciles - VIX

	Time Between Levels
	Plots - VIX
	Histogram Distribution - VIX
	Historical Data - VIX
	Stats By Year - VIX
	Stats By Month - VIX

	Data Overview - VVIX
	Acquire CBOE VVIX Data
	Load Data - VVIX
	DataFrame Info - VVIX
	Statistics - VVIX
	Deciles - VVIX

	Plots - VVIX
	Histogram Distribution - VVIX
	Historical Data - VVIX
	Stats By Year - VVIX
	Stats By Month - VVIX

	Data Overview - VIX/VVIX
	Merge VIX & VVIX Data
	Statistics - VIX/VVIX
	Deciles - VIX/VVIX

	Plots - VIX/VVIX
	Histogram Distribution - VIX/VVIX
	Historical Data - VIX/VVIX
	Stats By Year - VIX/VVIX
	Stats By Month - VIX/VVIX

	Investigating A Signal
	Determining A Spike Level
	Spike Counts (Signals) By Year
	Spike Counts (Signals) Plots By Year
	Spike Counts (Signals) Plots By Decade

	Trading History
	Trades Executed
	Trades Executed

