
harry-browne-permanent-portfolio

January 26, 2026

1 Does Harry Browne’s permanent portfolio withstand the test of
time?

1.1 Python Imports

[1]: # Standard Library
import datetime
import io
import os
import random
import sys
import warnings

from datetime import datetime, timedelta
from pathlib import Path

Data Handling
import numpy as np
import pandas as pd

Data Visualization
import matplotlib.dates as mdates
import matplotlib.pyplot as plt
import matplotlib.ticker as mtick
import seaborn as sns
from matplotlib.ticker import FormatStrFormatter, FuncFormatter, MultipleLocator

Data Sources
import yfinance as yf

Statistical Analysis
import statsmodels.api as sm

Machine Learning
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler

1

Suppress warnings
warnings.filterwarnings("ignore")

1.2 Add Directories To Path
[2]: # Add the source subdirectory to the system path to allow import config from␣

↪settings.py
current_directory = Path(os.getcwd())
website_base_directory = current_directory.parent.parent.parent
src_directory = website_base_directory / "src"
sys.path.append(str(src_directory)) if str(src_directory) not in sys.path else␣

↪None

Import settings.py
from settings import config

Add configured directories from config to path
SOURCE_DIR = config("SOURCE_DIR")
sys.path.append(str(Path(SOURCE_DIR))) if str(Path(SOURCE_DIR)) not in sys.path␣

↪else None

Add other configured directories
BASE_DIR = config("BASE_DIR")
CONTENT_DIR = config("CONTENT_DIR")
POSTS_DIR = config("POSTS_DIR")
PAGES_DIR = config("PAGES_DIR")
PUBLIC_DIR = config("PUBLIC_DIR")
SOURCE_DIR = config("SOURCE_DIR")
DATA_DIR = config("DATA_DIR")
DATA_MANUAL_DIR = config("DATA_MANUAL_DIR")

Print system path
for i, path in enumerate(sys.path):

print(f"{i}: {path}")

0: /usr/lib/python313.zip
1: /usr/lib/python3.13
2: /usr/lib/python3.13/lib-dynload
3:
4: /home/jared/python-virtual-envs/general-venv-p313/lib/python3.13/site-
packages
5:
/home/jared/Cloud_Storage/Dropbox/Websites/jaredszajkowski.github.io_congo/src

2

1.3 Track Index Dependencies

[3]: # Create file to track markdown dependencies
dep_file = Path("index_dep.txt")
dep_file.write_text("")

[3]: 0

1.4 Python Functions

[4]: from bb_clean_data import bb_clean_data
from df_info import df_info
from df_info_markdown import df_info_markdown
from export_track_md_deps import export_track_md_deps
from load_data import load_data
from pandas_set_decimal_places import pandas_set_decimal_places
from strategy_harry_brown_perm_port import strategy_harry_brown_perm_port
from summary_stats import summary_stats

1.5 Data Overview
1.5.1 Load Data

[5]: # Set decimal places
pandas_set_decimal_places(2)

Bonds dataframe
bb_clean_data(

base_directory=DATA_DIR,
fund_ticker_name="SPBDU10T_S&P US Treasury Bond 7-10 Year Total Return␣

↪Index",
source="Bloomberg",
asset_class="Indices",
excel_export=True,
pickle_export=True,
output_confirmation=True,

)

bonds_data = load_data(
base_directory=DATA_DIR,
ticker="SPBDU10T_S&P US Treasury Bond 7-10 Year Total Return Index_Clean",
source="Bloomberg",
asset_class="Indices",
timeframe="Daily",
file_format="excel",

)

bonds_data['Date'] = pd.to_datetime(bonds_data['Date'])

3

bonds_data.set_index('Date', inplace = True)
bonds_data = bonds_data[(bonds_data.index >= '1990-01-01') & (bonds_data.index␣

↪<= '2023-12-31')]
bonds_data.rename(columns={'Close':'Bonds_Close'}, inplace=True)
bonds_data['Bonds_Daily_Return'] = bonds_data['Bonds_Close'].pct_change()
bonds_data['Bonds_Total_Return'] = (1 + bonds_data['Bonds_Daily_Return']).

↪cumprod()
display(bonds_data.head())

The first and last date of data for SPBDU10T_S&P US Treasury Bond 7-10 Year
Total Return Index is:

Close
Date
1989-12-29 100

Close
Date
2024-04-30 579.02

Bloomberg data cleaning complete for SPBDU10T_S&P US Treasury Bond 7-10 Year
Total Return Index

Bonds_Close Bonds_Daily_Return Bonds_Total_Return
Date
1990-01-02 99.97 NaN NaN
1990-01-03 99.73 -0.00 1.00
1990-01-04 99.81 0.00 1.00
1990-01-05 99.77 -0.00 1.00
1990-01-08 99.68 -0.00 1.00

[6]: # Copy this <!-- INSERT_01_Bonds_Data_Head_HERE --> to index_temp.md
export_track_md_deps(

dep_file=dep_file,
md_filename="01_Bonds_Data_Head.md",
content=bonds_data.head().to_markdown(floatfmt=".3f"),
output_type="markdown",

)

� Exported and tracked: 01_Bonds_Data_Head.md

[7]: # Stocks dataframe
bb_clean_data(

base_directory=DATA_DIR,
fund_ticker_name="SPXT_S&P 500 Total Return Index",
source="Bloomberg",
asset_class="Indices",
excel_export=True,
pickle_export=True,

4

output_confirmation=True,
)

stocks_data = load_data(
base_directory=DATA_DIR,
ticker="SPXT_S&P 500 Total Return Index_Clean",
source="Bloomberg",
asset_class="Indices",
timeframe="Daily",
file_format="excel",

)

stocks_data['Date'] = pd.to_datetime(stocks_data['Date'])
stocks_data.set_index('Date', inplace = True)
stocks_data = stocks_data[(stocks_data.index >= '1990-01-01') & (stocks_data.

↪index <= '2023-12-31')]
stocks_data.rename(columns={'Close':'Stocks_Close'}, inplace=True)
stocks_data['Stocks_Daily_Return'] = stocks_data['Stocks_Close'].pct_change()
stocks_data['Stocks_Total_Return'] = (1 + stocks_data['Stocks_Daily_Return']).

↪cumprod()
display(stocks_data.head())

The first and last date of data for SPXT_S&P 500 Total Return Index is:

Close
Date
1988-01-04 256.02

Close
Date
2024-04-30 10951.66

Bloomberg data cleaning complete for SPXT_S&P 500 Total Return Index

Stocks_Close Stocks_Daily_Return Stocks_Total_Return
Date
1990-01-01 NaN NaN NaN
1990-01-02 386.16 NaN NaN
1990-01-03 385.17 -0.00 1.00
1990-01-04 382.02 -0.01 0.99
1990-01-05 378.30 -0.01 0.98

[8]: # Copy this <!-- INSERT_01_Stocks_Data_Head_HERE --> to index_temp.md
export_track_md_deps(

dep_file=dep_file,
md_filename="01_Stocks_Data_Head.md",
content=stocks_data.head().to_markdown(floatfmt=".3f"),
output_type="markdown",

5

)

� Exported and tracked: 01_Stocks_Data_Head.md

[9]: # Gold dataframe
bb_clean_data(

base_directory=DATA_DIR,
fund_ticker_name="XAU_Gold USD Spot",
source="Bloomberg",
asset_class="Commodities",
excel_export=True,
pickle_export=True,
output_confirmation=True,

)

gold_data = load_data(
base_directory=DATA_DIR,
ticker="XAU_Gold USD Spot_Clean",
source="Bloomberg",
asset_class="Commodities",
timeframe="Daily",
file_format="excel",

)

gold_data['Date'] = pd.to_datetime(gold_data['Date'])
gold_data.set_index('Date', inplace = True)
gold_data = gold_data[(gold_data.index >= '1990-01-01') & (gold_data.index <=␣

↪'2023-12-31')]
gold_data.rename(columns={'Close':'Gold_Close'}, inplace=True)
gold_data['Gold_Daily_Return'] = gold_data['Gold_Close'].pct_change()
gold_data['Gold_Total_Return'] = (1 + gold_data['Gold_Daily_Return']).cumprod()
display(gold_data.head())

The first and last date of data for XAU_Gold USD Spot is:

Close
Date
1949-12-30 34.69

Close
Date
2024-05-01 2299.31

Bloomberg data cleaning complete for XAU_Gold USD Spot

Gold_Close Gold_Daily_Return Gold_Total_Return
Date
1990-01-02 399.00 NaN NaN
1990-01-03 395.00 -0.01 0.99

6

1990-01-04 396.50 0.00 0.99
1990-01-05 405.00 0.02 1.02
1990-01-08 404.60 -0.00 1.01

[10]: # Copy this <!-- INSERT_01_Gold_Data_Head_HERE --> to index_temp.md
export_track_md_deps(

dep_file=dep_file,
md_filename="01_Gold_Data_Head.md",
content=gold_data.head().to_markdown(floatfmt=".3f"),
output_type="markdown",

)

� Exported and tracked: 01_Gold_Data_Head.md

1.5.2 Combine Data

[11]: # Merge the stock data and bond data into a single DataFrame using their␣
↪indices (dates)

perm_port = pd.merge(stocks_data['Stocks_Close'], bonds_data['Bonds_Close'],␣
↪left_index=True, right_index=True)

Add gold data to the portfolio DataFrame by merging it with the existing data␣
↪on indices (dates)

perm_port = pd.merge(perm_port, gold_data['Gold_Close'], left_index=True,␣
↪right_index=True)

Add a column for cash with a constant value of 1 (assumes the value of cash␣
↪remains constant at $1 over time)

perm_port['Cash_Close'] = 1

Remove any rows with missing values (NaN) to ensure clean data for further␣
↪analysis

perm_port.dropna(inplace=True)

Display the finalized portfolio DataFrame
display(perm_port)

Stocks_Close Bonds_Close Gold_Close Cash_Close
Date
1990-01-02 386.16 99.97 399.00 1
1990-01-03 385.17 99.73 395.00 1
1990-01-04 382.02 99.81 396.50 1
1990-01-05 378.30 99.77 405.00 1
1990-01-08 380.04 99.68 404.60 1
… … … … …
2023-12-22 10292.37 604.17 2053.08 1
2023-12-26 10335.98 604.55 2067.81 1
2023-12-27 10351.60 609.36 2077.49 1

7

2023-12-28 10356.59 606.83 2065.61 1
2023-12-29 10327.83 606.18 2062.98 1

[8479 rows x 4 columns]

1.5.3 Check For Missing Values

[12]: # Check for any missing values in each column
perm_port.isnull().any()

[12]: Stocks_Close False
Bonds_Close False
Gold_Close False
Cash_Close False
dtype: bool

1.5.4 Permanent Portfolio DataFrame Info

[13]: df_info(perm_port)

The columns, shape, and data types are:
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 8479 entries, 1990-01-02 to 2023-12-29
Data columns (total 4 columns):
Column Non-Null Count Dtype
--- ------ -------------- -----
0 Stocks_Close 8479 non-null float64
1 Bonds_Close 8479 non-null float64
2 Gold_Close 8479 non-null float64
3 Cash_Close 8479 non-null int64
dtypes: float64(3), int64(1)
memory usage: 331.2 KB
None
The first 5 rows are:

Stocks_Close Bonds_Close Gold_Close Cash_Close
Date
1990-01-02 386.16 99.97 399.00 1
1990-01-03 385.17 99.73 395.00 1
1990-01-04 382.02 99.81 396.50 1
1990-01-05 378.30 99.77 405.00 1
1990-01-08 380.04 99.68 404.60 1

The last 5 rows are:

Stocks_Close Bonds_Close Gold_Close Cash_Close
Date
2023-12-22 10292.37 604.17 2053.08 1
2023-12-26 10335.98 604.55 2067.81 1
2023-12-27 10351.60 609.36 2077.49 1

8

2023-12-28 10356.59 606.83 2065.61 1
2023-12-29 10327.83 606.18 2062.98 1

[14]: # Copy this <!-- INSERT_02_Perm_Port_DF_Info_HERE --> to index_temp.md
export_track_md_deps(

dep_file=dep_file,
md_filename="02_Perm_Port_DF_Info.md",
content=df_info_markdown(perm_port),
output_type="markdown",

)

� Exported and tracked: 02_Perm_Port_DF_Info.md

1.6 Execute Strategy

[15]: # List of funds to be used
fund_list = ['Stocks', 'Bonds', 'Gold', 'Cash']

Starting cash contribution
starting_cash = 10000

Monthly cash contribution
cash_contrib = 0

strat = strategy_harry_brown_perm_port(
fund_list=fund_list,
starting_cash=starting_cash,
cash_contrib=cash_contrib,
close_prices_df=perm_port,
rebal_month=1,
rebal_day=1,
rebal_per_high=0.35,
rebal_per_low=0.15,
excel_export=True,
pickle_export=True,
output_confirmation=True,

)

strat = strat.set_index('Date')

Strategy complete for Stocks_Bonds_Gold_Cash

[16]: df_info(strat)

The columns, shape, and data types are:
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 8479 entries, 1990-01-02 to 2023-12-29
Data columns (total 34 columns):
Column Non-Null Count Dtype

9

--- ------ -------------- -----
0 Stocks_Close 8479 non-null float64
1 Bonds_Close 8479 non-null float64
2 Gold_Close 8479 non-null float64
3 Cash_Close 8479 non-null int64
4 Stocks_BA_Shares 8479 non-null float64
5 Stocks_BA_$_Invested 8479 non-null float64
6 Stocks_BA_Port_% 8479 non-null float64
7 Bonds_BA_Shares 8479 non-null float64
8 Bonds_BA_$_Invested 8479 non-null float64
9 Bonds_BA_Port_% 8479 non-null float64
10 Gold_BA_Shares 8479 non-null float64
11 Gold_BA_$_Invested 8479 non-null float64
12 Gold_BA_Port_% 8479 non-null float64
13 Cash_BA_Shares 8479 non-null float64
14 Cash_BA_$_Invested 8479 non-null float64
15 Cash_BA_Port_% 8479 non-null float64
16 Total_BA_$_Invested 8479 non-null float64
17 Contribution 8479 non-null int64
18 Rebalance 8479 non-null object
19 Stocks_AA_Shares 8479 non-null float64
20 Stocks_AA_$_Invested 8479 non-null float64
21 Stocks_AA_Port_% 8479 non-null float64
22 Bonds_AA_Shares 8479 non-null float64
23 Bonds_AA_$_Invested 8479 non-null float64
24 Bonds_AA_Port_% 8479 non-null float64
25 Gold_AA_Shares 8479 non-null float64
26 Gold_AA_$_Invested 8479 non-null float64
27 Gold_AA_Port_% 8479 non-null float64
28 Cash_AA_Shares 8479 non-null float64
29 Cash_AA_$_Invested 8479 non-null float64
30 Cash_AA_Port_% 8479 non-null float64
31 Total_AA_$_Invested 8479 non-null float64
32 Return 8478 non-null float64
33 Cumulative_Return 8478 non-null float64
dtypes: float64(31), int64(2), object(1)
memory usage: 2.3+ MB
None
The first 5 rows are:

Stocks_Close Bonds_Close Gold_Close Cash_Close \
Date
1990-01-02 386.16 99.97 399.00 1
1990-01-03 385.17 99.73 395.00 1
1990-01-04 382.02 99.81 396.50 1
1990-01-05 378.30 99.77 405.00 1
1990-01-08 380.04 99.68 404.60 1

10

Stocks_BA_Shares Stocks_BA_$_Invested Stocks_BA_Port_% \
Date
1990-01-02 6.47 2500.00 0.25
1990-01-03 6.47 2493.59 0.25
1990-01-04 6.47 2473.20 0.25
1990-01-05 6.47 2449.11 0.25
1990-01-08 6.47 2460.38 0.25

Bonds_BA_Shares Bonds_BA_$_Invested Bonds_BA_Port_% … \
Date …
1990-01-02 25.01 2500.00 0.25 …
1990-01-03 25.01 2494.02 0.25 …
1990-01-04 25.01 2496.02 0.25 …
1990-01-05 25.01 2494.92 0.25 …
1990-01-08 25.01 2492.72 0.25 …

Bonds_AA_Port_% Gold_AA_Shares Gold_AA_$_Invested \
Date
1990-01-02 0.25 6.27 2500.00
1990-01-03 0.25 6.27 2474.94
1990-01-04 0.25 6.27 2484.34
1990-01-05 0.25 6.27 2537.59
1990-01-08 0.25 6.27 2535.09

Gold_AA_Port_% Cash_AA_Shares Cash_AA_$_Invested \
Date
1990-01-02 0.25 2500.00 2500.00
1990-01-03 0.25 2500.00 2500.00
1990-01-04 0.25 2500.00 2500.00
1990-01-05 0.25 2500.00 2500.00
1990-01-08 0.25 2500.00 2500.00

Cash_AA_Port_% Total_AA_$_Invested Return Cumulative_Return
Date
1990-01-02 0.25 10000.00 NaN NaN
1990-01-03 0.25 9962.55 -0.00 1.00
1990-01-04 0.25 9953.56 -0.00 1.00
1990-01-05 0.25 9981.63 0.00 1.00
1990-01-08 0.25 9988.19 0.00 1.00

[5 rows x 34 columns]

The last 5 rows are:

Stocks_Close Bonds_Close Gold_Close Cash_Close \
Date
2023-12-22 10292.37 604.17 2053.08 1
2023-12-26 10335.98 604.55 2067.81 1
2023-12-27 10351.60 609.36 2077.49 1

11

2023-12-28 10356.59 606.83 2065.61 1
2023-12-29 10327.83 606.18 2062.98 1

Stocks_BA_Shares Stocks_BA_$_Invested Stocks_BA_Port_% \
Date
2023-12-22 1.81 18595.87 0.29
2023-12-26 1.81 18674.66 0.29
2023-12-27 1.81 18702.89 0.29
2023-12-28 1.81 18711.90 0.29
2023-12-29 1.81 18659.94 0.29

Bonds_BA_Shares Bonds_BA_$_Invested Bonds_BA_Port_% … \
Date …
2023-12-22 25.03 15124.46 0.23 …
2023-12-26 25.03 15134.20 0.23 …
2023-12-27 25.03 15254.36 0.23 …
2023-12-28 25.03 15191.10 0.23 …
2023-12-29 25.03 15175.01 0.23 …

Bonds_AA_Port_% Gold_AA_Shares Gold_AA_$_Invested \
Date
2023-12-22 0.23 8.00 16426.12
2023-12-26 0.23 8.00 16543.97
2023-12-27 0.23 8.00 16621.42
2023-12-28 0.23 8.00 16526.37
2023-12-29 0.23 8.00 16505.33

Gold_AA_Port_% Cash_AA_Shares Cash_AA_$_Invested \
Date
2023-12-22 0.25 14717.17 14717.17
2023-12-26 0.25 14717.17 14717.17
2023-12-27 0.25 14717.17 14717.17
2023-12-28 0.25 14717.17 14717.17
2023-12-29 0.25 14717.17 14717.17

Cash_AA_Port_% Total_AA_$_Invested Return Cumulative_Return
Date
2023-12-22 0.23 64863.62 0.00 6.49
2023-12-26 0.23 65070.01 0.00 6.51
2023-12-27 0.23 65295.84 0.00 6.53
2023-12-28 0.23 65146.54 -0.00 6.51
2023-12-29 0.23 65057.44 -0.00 6.51

[5 rows x 34 columns]

[17]: # Copy this <!-- INSERT_03_Strategy_HERE --> to index_temp.md
export_track_md_deps(

12

dep_file=dep_file,
md_filename="03_Strategy.md",
content=df_info_markdown(strat),
output_type="markdown",

)

� Exported and tracked: 03_Strategy.md

1.7 Summary Statistics

[18]: sum_stats = summary_stats(
fund_list=fund_list,
df=strat[['Return']],
period="Daily",
use_calendar_days=False,
excel_export=True,
pickle_export=True,
output_confirmation=True,

)

strat_pre_1999 = strat[strat.index < '2000-01-01']
sum_stats_pre_1999 = summary_stats(

fund_list=fund_list,
df=strat_pre_1999[['Return']],
period="Daily",
use_calendar_days=False,
excel_export=False,
pickle_export=False,
output_confirmation=True,

)

strat_post_1999 = strat[strat.index >= '2000-01-01']
sum_stats_post_1999 = summary_stats(

fund_list=fund_list,
df=strat_post_1999[['Return']],
period="Daily",
use_calendar_days=False,
excel_export=False,
pickle_export=False,
output_confirmation=True,

)

strat_post_2009 = strat[strat.index >= '2010-01-01']
sum_stats_post_2009 = summary_stats(

fund_list=fund_list,
df=strat_post_2009[['Return']],
period="Daily",

13

use_calendar_days=False,
excel_export=False,
pickle_export=False,
output_confirmation=True,

)

Summary stats complete for Stocks_Bonds_Gold_Cash
Summary stats complete for Stocks_Bonds_Gold_Cash
Summary stats complete for Stocks_Bonds_Gold_Cash
Summary stats complete for Stocks_Bonds_Gold_Cash

[19]: all_sum_stats = pd.concat([sum_stats])
all_sum_stats = all_sum_stats.rename(index={'Return': '1990 - 2023'})
all_sum_stats = pd.concat([all_sum_stats, sum_stats_pre_1999])
all_sum_stats = all_sum_stats.rename(index={'Return': 'Pre 1999'})
all_sum_stats = pd.concat([all_sum_stats, sum_stats_post_1999])
all_sum_stats = all_sum_stats.rename(index={'Return': 'Post 1999'})
all_sum_stats = pd.concat([all_sum_stats, sum_stats_post_2009])
all_sum_stats = all_sum_stats.rename(index={'Return': 'Post 2009'})
display(all_sum_stats)

Annualized Mean Annualized Volatility Annualized Sharpe Ratio \
1990 - 2023 0.06 0.06 0.96
Pre 1999 0.06 0.05 1.21
Post 1999 0.06 0.06 0.88
Post 2009 0.06 0.06 0.93

CAGR Daily Max Return Daily Max Return (Date) Daily Min Return \
1990 - 2023 0.06 0.03 2020-03-24 -0.03
Pre 1999 0.06 0.02 1999-09-28 -0.02
Post 1999 0.06 0.03 2020-03-24 -0.03
Post 2009 0.06 0.03 2020-03-24 -0.03

Daily Min Return (Date) Max Drawdown Peak Trough \
1990 - 2023 2020-03-12 -0.15 2008-03-18 2008-11-12
Pre 1999 1993-08-05 -0.06 1998-07-20 1998-08-31
Post 1999 2020-03-12 -0.15 2008-03-18 2008-11-12
Post 2009 2020-03-12 -0.13 2021-12-27 2022-10-20

Recovery Date Days to Recover MAR Ratio
1990 - 2023 2009-10-06 328 0.37
Pre 1999 1998-11-05 66 0.98
Post 1999 2009-10-06 328 0.36
Post 2009 2023-12-01 407 0.44

[20]: # Copy this <!-- INSERT_04_Summary_Stats_HERE --> to index_temp.md
export_track_md_deps(

dep_file=dep_file,

14

md_filename="04_Summary_Stats.md",
content=all_sum_stats.to_markdown(floatfmt=".3f"),
output_type="markdown",

)

� Exported and tracked: 04_Summary_Stats.md

1.8 Annual Returns
[21]: # Create dataframe for the annual returns

strat_annual_returns = strat['Cumulative_Return'].resample('Y').last().
↪pct_change().dropna()

strat_annual_returns_df = strat_annual_returns.to_frame()
strat_annual_returns_df['Year'] = strat_annual_returns_df.index.year # Add a␣

↪'Year' column with just the year
strat_annual_returns_df.reset_index(drop=True, inplace=True) # Reset the index␣

↪to remove the datetime index

Now the DataFrame will have 'Year' and 'Cumulative_Return' columns
strat_annual_returns_df = strat_annual_returns_df[['Year',␣

↪'Cumulative_Return']] # Keep only 'Year' and 'Cumulative_Return' columns
strat_annual_returns_df.rename(columns = {'Cumulative_Return':'Return'},␣

↪inplace=True)
strat_annual_returns_df.set_index('Year', inplace=True)
display(strat_annual_returns_df)

Return
Year
1991 0.10
1992 0.03
1993 0.10
1994 -0.02
1995 0.15
1996 0.05
1997 0.06
1998 0.10
1999 0.04
2000 0.00
2001 -0.01
2002 0.04
2003 0.12
2004 0.05
2005 0.06
2006 0.10
2007 0.12
2008 -0.03
2009 0.11
2010 0.14

15

2011 0.07
2012 0.07
2013 -0.01
2014 0.05
2015 -0.02
2016 0.05
2017 0.09
2018 -0.01
2019 0.15
2020 0.13
2021 0.06
2022 -0.08
2023 0.11

[22]: # Copy this <!-- INSERT_05_Annual_Returns_HERE --> to index_temp.md
export_track_md_deps(

dep_file=dep_file,
md_filename="05_Annual_Returns.md",
content=strat_annual_returns_df.to_markdown(floatfmt=".3f"),
output_type="markdown",

)

� Exported and tracked: 05_Annual_Returns.md

[23]: # Export the annual returns DataFrame to Excel and pickle files
plan_name = '_'.join(fund_list)
strat_annual_returns_df.to_excel(f"{plan_name}_Annual_Returns.xlsx",␣

↪sheet_name="data")
strat_annual_returns_df.to_pickle(f"{plan_name}_Annual_Returns.pkl")

1.9 Plots
1.9.1 Plot Cumulative Return

[24]: def plot_cumulative_return(strat_df):
Generate plot
plt.figure(figsize=(10, 5), facecolor = '#F5F5F5')

Plotting data
plt.plot(strat_df.index, strat_df['Cumulative_Return'], label = 'Strategy␣

↪Cumulative Return', linestyle='-', color='green', linewidth=1)

Set X axis
x_tick_spacing = 5 # Specify the interval for x-axis ticks
plt.gca().xaxis.set_major_locator(MultipleLocator(x_tick_spacing))
plt.gca().xaxis.set_major_locator(mdates.YearLocator())
plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%Y'))
plt.xlabel('Year', fontsize = 9)

16

plt.xticks(rotation = 45, fontsize = 7)
plt.xlim(,)

Set Y axis
y_tick_spacing = 0.5 # Specify the interval for y-axis ticks
plt.gca().yaxis.set_major_locator(MultipleLocator(y_tick_spacing))
plt.ylabel('Cumulative Return', fontsize = 9)
plt.yticks(fontsize = 7)
plt.ylim(0, 7.5)

Set title, etc.
plt.title('Cumulative Return', fontsize = 12)

Set the grid & legend
plt.tight_layout()
plt.grid(True)
plt.legend(fontsize=8)

Save the figure
plt.savefig('06_Cumulative_Return.png', dpi=300, bbox_inches='tight')

Display the plot
return plt.show()

[25]: plot_cumulative_return(strat)

17

1.9.2 Plot Portfolio & Component Values

[26]: def plot_values(strat_df):
Generate plot
plt.figure(figsize=(10, 5), facecolor = '#F5F5F5')

Plotting data
plt.plot(strat_df.index, strat_df['Total_AA_$_Invested'], label='Total␣

↪Portfolio Value', linestyle='-', color='black', linewidth=1)
plt.plot(strat_df.index, strat_df['Stocks_AA_$_Invested'], label='Stocks␣

↪Position Value', linestyle='-', color='orange', linewidth=1)
plt.plot(strat_df.index, strat_df['Bonds_AA_$_Invested'], label='Bond␣

↪Position Value', linestyle='-', color='yellow', linewidth=1)
plt.plot(strat_df.index, strat_df['Gold_AA_$_Invested'], label='Gold␣

↪Position Value', linestyle='-', color='blue', linewidth=1)
plt.plot(strat_df.index, strat_df['Cash_AA_$_Invested'], label='Cash␣

↪Position Value', linestyle='-', color='brown', linewidth=1)

Set X axis
x_tick_spacing = 5 # Specify the interval for x-axis ticks
plt.gca().xaxis.set_major_locator(MultipleLocator(x_tick_spacing))
plt.gca().xaxis.set_major_locator(mdates.YearLocator())
plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%Y'))
plt.xlabel('Year', fontsize = 9)
plt.xticks(rotation = 45, fontsize = 7)
plt.xlim(,)

Set Y axis
y_tick_spacing = 5000 # Specify the interval for y-axis ticks
plt.gca().yaxis.set_major_locator(MultipleLocator(y_tick_spacing))
plt.gca().yaxis.set_major_formatter(mtick.FuncFormatter(lambda x, pos: '{:,.

↪0f}'.format(x))) # Adding commas to y-axis labels
plt.ylabel('Total Value ($)', fontsize = 9)
plt.yticks(fontsize = 7)
plt.ylim(0, 75000)

Set title, etc.
plt.title('Total Values For Stocks, Bonds, Gold, and Cash Positions and␣

↪Portfolio', fontsize = 12)

Set the grid & legend
plt.tight_layout()
plt.grid(True)
plt.legend(fontsize=8)

Save the figure
plt.savefig('07_Portfolio_Values.png', dpi=300, bbox_inches='tight')

18

Display the plot
return plt.show()

[27]: plot_values(strat)

1.9.3 Plot Portfolio Drawdown

[28]: def plot_drawdown(strat_df):
rolling_max = strat_df['Total_AA_$_Invested'].cummax()
drawdown = (strat_df['Total_AA_$_Invested'] - rolling_max) / rolling_max *␣

↪100

Generate plot
plt.figure(figsize=(10, 5), facecolor = '#F5F5F5')

Plotting data
plt.plot(strat_df.index, drawdown, label='Drawdown', linestyle='-',␣

↪color='red', linewidth=1)

Set X axis
x_tick_spacing = 5 # Specify the interval for x-axis ticks
plt.gca().xaxis.set_major_locator(MultipleLocator(x_tick_spacing))
plt.gca().xaxis.set_major_locator(mdates.YearLocator())
plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%Y'))
plt.xlabel('Year', fontsize = 9)
plt.xticks(rotation = 45, fontsize = 7)
plt.xlim(,)

19

Set Y axis
y_tick_spacing = 1 # Specify the interval for y-axis ticks
plt.gca().yaxis.set_major_locator(MultipleLocator(y_tick_spacing))
plt.gca().yaxis.set_major_formatter(mtick.FuncFormatter(lambda x, pos: '{:

↪,.0f}'.format(x))) # Adding commas to y-axis labels
plt.gca().yaxis.set_major_formatter(mtick.FuncFormatter(lambda x, pos: '{:.

↪0f}'.format(x))) # Adding 0 decimal places to y-axis labels
plt.ylabel('Drawdown (%)', fontsize = 9)
plt.yticks(fontsize = 7)
plt.ylim(-20, 0)

Set title, etc.
plt.title('Portfolio Drawdown', fontsize = 12)

Set the grid & legend
plt.tight_layout()
plt.grid(True)
plt.legend(fontsize=8)

Save the figure
plt.savefig('08_Portfolio_Drawdown.png', dpi=300, bbox_inches='tight')

Display the plot
return plt.show()

[29]: plot_drawdown(strat)

20

1.9.4 Plot Asset Weights

[30]: def plot_asset_weights(strat_df):
Generate plot
plt.figure(figsize=(10, 5), facecolor = '#F5F5F5')

Plotting data
plt.plot(strat_df.index, strat_df['Stocks_AA_Port_%'] * 100, label='Stocks␣

↪Portfolio Weight', linestyle='-', color='orange', linewidth=1)
plt.plot(strat_df.index, strat_df['Bonds_AA_Port_%'] * 100, label='Bonds␣

↪Portfolio Weight', linestyle='-', color='yellow', linewidth=1)
plt.plot(strat_df.index, strat_df['Gold_AA_Port_%'] * 100, label='Gold␣

↪Portfolio Weight', linestyle='-', color='blue', linewidth=1)
plt.plot(strat_df.index, strat_df['Cash_AA_Port_%'] * 100, label='Cash␣

↪Portfolio Weight', linestyle='-', color='brown', linewidth=1)

Set X axis
x_tick_spacing = 5 # Specify the interval for x-axis ticks
plt.gca().xaxis.set_major_locator(MultipleLocator(x_tick_spacing))
plt.gca().xaxis.set_major_locator(mdates.YearLocator())
plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%Y'))
plt.xlabel('Year', fontsize = 9)
plt.xticks(rotation = 45, fontsize = 7)
plt.xlim(,)

Set Y axis
y_tick_spacing = 1 # Specify the interval for y-axis ticks
plt.gca().yaxis.set_major_locator(MultipleLocator(y_tick_spacing))
plt.gca().yaxis.set_major_formatter(mtick.FuncFormatter(lambda x, pos: '{:

↪,.0f}'.format(x))) # Adding commas to y-axis labels
plt.ylabel('Asset Weight (%)', fontsize = 9)
plt.yticks(fontsize = 7)
plt.ylim(14, 36)

Set title, etc.
plt.title('Portfolio Asset Weights For Stocks, Bonds, Gold, and Cash␣

↪Positions', fontsize = 12)

Set the grid & legend
plt.tight_layout()
plt.grid(True)
plt.legend(fontsize=8)

Save the figure
plt.savefig('09_Portfolio_Weights.png', dpi=300, bbox_inches='tight')

Display the plot

21

return plt.show()

[31]: plot_asset_weights(strat)

1.9.5 Plot Annual Returns

[32]: def plot_annual_returns(return_df):
Generate plot
plt.figure(figsize=(10, 5), facecolor = '#F5F5F5')

Plotting data
plt.bar(return_df.index, return_df['Return'] * 100, label='Annual Returns',␣

↪width=0.5) # width adjusted for better spacing

Set X axis
x_tick_spacing = 1 # Specify the interval for x-axis ticks
plt.gca().xaxis.set_major_locator(MultipleLocator(x_tick_spacing))
plt.gca().xaxis.set_major_locator(mdates.YearLocator())
plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%Y'))
plt.xlabel('Year', fontsize = 9)
plt.xticks(rotation = 45, fontsize = 7)
plt.xlim(,)

Set Y axis
y_tick_spacing = 1 # Specify the interval for y-axis ticks
plt.gca().yaxis.set_major_locator(MultipleLocator(y_tick_spacing))
plt.gca().yaxis.set_major_formatter(mtick.FuncFormatter(lambda x, pos: '{:

↪,.0f}'.format(x))) # Adding commas to y-axis labels

22

plt.ylabel('Annual Return (%)', fontsize = 9)
plt.yticks(fontsize = 7)
plt.ylim(-20, 20)

Set title, etc.
plt.title('Portfolio Annual Returns', fontsize = 12)

Set the grid & legend
plt.tight_layout()
plt.grid(True)
plt.legend(fontsize=8)

Save the figure
plt.savefig('10_Portfolio_Annual_Returns.png', dpi=300, bbox_inches='tight')

Display the plot
return plt.show()

[33]: plot_annual_returns(strat_annual_returns_df)

1.10 Portfolio Summary Statistics For Various Rebalance Dates

[34]: # # Set ranges for months and days
months = list(range(1, 13))
days = list(range(1, 32))

Create an empty DataFrame to store the results

23

stats = pd.DataFrame(columns = ['Rebal_Month', 'Rebal_Day', 'Annualized␣
↪Mean', 'Annualized Volatility', 'Annualized Sharpe Ratio', 'CAGR',

'Daily Max Return', 'Daily Max Return␣
↪(Date)', 'Daily Min Return', 'Daily Min Return (Date)', 'Max Drawdown',

'Peak', 'Bottom', 'Recovery Date',])

Loop through each combination of month and day
for month in months:
for day in days:
try:
strat = strategy_harry_brown_perm_port(
fund_list=fund_list,
starting_cash=starting_cash,
cash_contrib=cash_contrib,
close_prices_df=perm_port,
rebal_month=month,
rebal_day=day,
rebal_per_high=0.35,
rebal_per_low=0.15,
excel_export=False,
pickle_export=False,
output_confirmation=False,
).set_index('Date')

sum_stats = summary_stats(
fund_list=fund_list,
df=strat[['Return']],
period="Daily",
excel_export=False,
pickle_export=False,
output_confirmation=False,
)

stats = pd.concat([stats, sum_stats], ignore_index=True)
stats.loc[stats.index[-1], 'Rebal_Month'] = month
stats.loc[stats.index[-1], 'Rebal_Day'] = day
print(f"Month: {month}, Day: {day} - Stats added successfully.")

except Exception as e:
print(f"Error for month {month} and day {day}: {e}")
continue

[35]: # # Export the stats DataFrame to Excel and pickle files
plan_name = '_'.join(fund_list)
stats.to_excel(f"{plan_name}_Various_Rebalance_Summary_Stats.xlsx",␣

↪sheet_name="data")
stats.to_pickle(f"{plan_name}_Various_Rebalance_Summary_Stats.pkl")

24

[36]: # Load the stats DataFrame from the pickle file
stats = load_data(f"{plan_name}_Various_Rebalance_Summary_Stats.pkl")

[37]: # stats

25

	Does Harry Browne's permanent portfolio withstand the test of time?
	Python Imports
	Add Directories To Path
	Track Index Dependencies
	Python Functions
	Data Overview
	Load Data
	Combine Data
	Check For Missing Values
	Permanent Portfolio DataFrame Info

	Execute Strategy
	Summary Statistics
	Annual Returns
	Plots
	Plot Cumulative Return
	Plot Portfolio & Component Values
	Plot Portfolio Drawdown
	Plot Asset Weights
	Plot Annual Returns

	Portfolio Summary Statistics For Various Rebalance Dates

