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January 26, 2026

1 Does Harry Browne’s permanent portfolio withstand the test of
time?

1.1 Python Imports

[1]: # Standard Library
import datetime
import io
import os
import random
import sys
import warnings

from datetime import datetime, timedelta
from pathlib import Path

# Data Handling
import numpy as np
import pandas as pd

# Data Visualization
import matplotlib.dates as mdates
import matplotlib.pyplot as plt
import matplotlib.ticker as mtick
import seaborn as sns
from matplotlib.ticker import FormatStrFormatter, FuncFormatter, MultipleLocator

# Data Sources
import yfinance as yf

# Statistical Analysis
import statsmodels.api as sm

# Machine Learning
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
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# Suppress warnings
warnings.filterwarnings("ignore")

1.2 Add Directories To Path
[2]: # Add the source subdirectory to the system path to allow import config from␣

↪settings.py
current_directory = Path(os.getcwd())
website_base_directory = current_directory.parent.parent.parent
src_directory = website_base_directory / "src"
sys.path.append(str(src_directory)) if str(src_directory) not in sys.path else␣

↪None

# Import settings.py
from settings import config

# Add configured directories from config to path
SOURCE_DIR = config("SOURCE_DIR")
sys.path.append(str(Path(SOURCE_DIR))) if str(Path(SOURCE_DIR)) not in sys.path␣

↪else None

# Add other configured directories
BASE_DIR = config("BASE_DIR")
CONTENT_DIR = config("CONTENT_DIR")
POSTS_DIR = config("POSTS_DIR")
PAGES_DIR = config("PAGES_DIR")
PUBLIC_DIR = config("PUBLIC_DIR")
SOURCE_DIR = config("SOURCE_DIR")
DATA_DIR = config("DATA_DIR")
DATA_MANUAL_DIR = config("DATA_MANUAL_DIR")

# Print system path
for i, path in enumerate(sys.path):

print(f"{i}: {path}")

0: /usr/lib/python313.zip
1: /usr/lib/python3.13
2: /usr/lib/python3.13/lib-dynload
3:
4: /home/jared/python-virtual-envs/general-venv-p313/lib/python3.13/site-
packages
5:
/home/jared/Cloud_Storage/Dropbox/Websites/jaredszajkowski.github.io_congo/src
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1.3 Track Index Dependencies

[3]: # Create file to track markdown dependencies
dep_file = Path("index_dep.txt")
dep_file.write_text("")

[3]: 0

1.4 Python Functions

[4]: from bb_clean_data import bb_clean_data
from df_info import df_info
from df_info_markdown import df_info_markdown
from export_track_md_deps import export_track_md_deps
from load_data import load_data
from pandas_set_decimal_places import pandas_set_decimal_places
from strategy_harry_brown_perm_port import strategy_harry_brown_perm_port
from summary_stats import summary_stats

1.5 Data Overview
1.5.1 Load Data

[5]: # Set decimal places
pandas_set_decimal_places(2)

# Bonds dataframe
bb_clean_data(

base_directory=DATA_DIR,
fund_ticker_name="SPBDU10T_S&P US Treasury Bond 7-10 Year Total Return␣

↪Index",
source="Bloomberg",
asset_class="Indices",
excel_export=True,
pickle_export=True,
output_confirmation=True,

)

bonds_data = load_data(
base_directory=DATA_DIR,
ticker="SPBDU10T_S&P US Treasury Bond 7-10 Year Total Return Index_Clean",
source="Bloomberg",
asset_class="Indices",
timeframe="Daily",
file_format="excel",

)

bonds_data['Date'] = pd.to_datetime(bonds_data['Date'])
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bonds_data.set_index('Date', inplace = True)
bonds_data = bonds_data[(bonds_data.index >= '1990-01-01') & (bonds_data.index␣

↪<= '2023-12-31')]
bonds_data.rename(columns={'Close':'Bonds_Close'}, inplace=True)
bonds_data['Bonds_Daily_Return'] = bonds_data['Bonds_Close'].pct_change()
bonds_data['Bonds_Total_Return'] = (1 + bonds_data['Bonds_Daily_Return']).

↪cumprod()
display(bonds_data.head())

The first and last date of data for SPBDU10T_S&P US Treasury Bond 7-10 Year
Total Return Index is:

Close
Date
1989-12-29 100

Close
Date
2024-04-30 579.02

Bloomberg data cleaning complete for SPBDU10T_S&P US Treasury Bond 7-10 Year
Total Return Index
--------------------

Bonds_Close Bonds_Daily_Return Bonds_Total_Return
Date
1990-01-02 99.97 NaN NaN
1990-01-03 99.73 -0.00 1.00
1990-01-04 99.81 0.00 1.00
1990-01-05 99.77 -0.00 1.00
1990-01-08 99.68 -0.00 1.00

[6]: # Copy this <!-- INSERT_01_Bonds_Data_Head_HERE --> to index_temp.md
export_track_md_deps(

dep_file=dep_file,
md_filename="01_Bonds_Data_Head.md",
content=bonds_data.head().to_markdown(floatfmt=".3f"),
output_type="markdown",

)

� Exported and tracked: 01_Bonds_Data_Head.md

[7]: # Stocks dataframe
bb_clean_data(

base_directory=DATA_DIR,
fund_ticker_name="SPXT_S&P 500 Total Return Index",
source="Bloomberg",
asset_class="Indices",
excel_export=True,
pickle_export=True,
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output_confirmation=True,
)

stocks_data = load_data(
base_directory=DATA_DIR,
ticker="SPXT_S&P 500 Total Return Index_Clean",
source="Bloomberg",
asset_class="Indices",
timeframe="Daily",
file_format="excel",

)

stocks_data['Date'] = pd.to_datetime(stocks_data['Date'])
stocks_data.set_index('Date', inplace = True)
stocks_data = stocks_data[(stocks_data.index >= '1990-01-01') & (stocks_data.

↪index <= '2023-12-31')]
stocks_data.rename(columns={'Close':'Stocks_Close'}, inplace=True)
stocks_data['Stocks_Daily_Return'] = stocks_data['Stocks_Close'].pct_change()
stocks_data['Stocks_Total_Return'] = (1 + stocks_data['Stocks_Daily_Return']).

↪cumprod()
display(stocks_data.head())

The first and last date of data for SPXT_S&P 500 Total Return Index is:

Close
Date
1988-01-04 256.02

Close
Date
2024-04-30 10951.66

Bloomberg data cleaning complete for SPXT_S&P 500 Total Return Index
--------------------

Stocks_Close Stocks_Daily_Return Stocks_Total_Return
Date
1990-01-01 NaN NaN NaN
1990-01-02 386.16 NaN NaN
1990-01-03 385.17 -0.00 1.00
1990-01-04 382.02 -0.01 0.99
1990-01-05 378.30 -0.01 0.98

[8]: # Copy this <!-- INSERT_01_Stocks_Data_Head_HERE --> to index_temp.md
export_track_md_deps(

dep_file=dep_file,
md_filename="01_Stocks_Data_Head.md",
content=stocks_data.head().to_markdown(floatfmt=".3f"),
output_type="markdown",
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)

� Exported and tracked: 01_Stocks_Data_Head.md

[9]: # Gold dataframe
bb_clean_data(

base_directory=DATA_DIR,
fund_ticker_name="XAU_Gold USD Spot",
source="Bloomberg",
asset_class="Commodities",
excel_export=True,
pickle_export=True,
output_confirmation=True,

)

gold_data = load_data(
base_directory=DATA_DIR,
ticker="XAU_Gold USD Spot_Clean",
source="Bloomberg",
asset_class="Commodities",
timeframe="Daily",
file_format="excel",

)

gold_data['Date'] = pd.to_datetime(gold_data['Date'])
gold_data.set_index('Date', inplace = True)
gold_data = gold_data[(gold_data.index >= '1990-01-01') & (gold_data.index <=␣

↪'2023-12-31')]
gold_data.rename(columns={'Close':'Gold_Close'}, inplace=True)
gold_data['Gold_Daily_Return'] = gold_data['Gold_Close'].pct_change()
gold_data['Gold_Total_Return'] = (1 + gold_data['Gold_Daily_Return']).cumprod()
display(gold_data.head())

The first and last date of data for XAU_Gold USD Spot is:

Close
Date
1949-12-30 34.69

Close
Date
2024-05-01 2299.31

Bloomberg data cleaning complete for XAU_Gold USD Spot
--------------------

Gold_Close Gold_Daily_Return Gold_Total_Return
Date
1990-01-02 399.00 NaN NaN
1990-01-03 395.00 -0.01 0.99
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1990-01-04 396.50 0.00 0.99
1990-01-05 405.00 0.02 1.02
1990-01-08 404.60 -0.00 1.01

[10]: # Copy this <!-- INSERT_01_Gold_Data_Head_HERE --> to index_temp.md
export_track_md_deps(

dep_file=dep_file,
md_filename="01_Gold_Data_Head.md",
content=gold_data.head().to_markdown(floatfmt=".3f"),
output_type="markdown",

)

� Exported and tracked: 01_Gold_Data_Head.md

1.5.2 Combine Data

[11]: # Merge the stock data and bond data into a single DataFrame using their␣
↪indices (dates)

perm_port = pd.merge(stocks_data['Stocks_Close'], bonds_data['Bonds_Close'],␣
↪left_index=True, right_index=True)

# Add gold data to the portfolio DataFrame by merging it with the existing data␣
↪on indices (dates)

perm_port = pd.merge(perm_port, gold_data['Gold_Close'], left_index=True,␣
↪right_index=True)

# Add a column for cash with a constant value of 1 (assumes the value of cash␣
↪remains constant at $1 over time)

perm_port['Cash_Close'] = 1

# Remove any rows with missing values (NaN) to ensure clean data for further␣
↪analysis

perm_port.dropna(inplace=True)

# Display the finalized portfolio DataFrame
display(perm_port)

Stocks_Close Bonds_Close Gold_Close Cash_Close
Date
1990-01-02 386.16 99.97 399.00 1
1990-01-03 385.17 99.73 395.00 1
1990-01-04 382.02 99.81 396.50 1
1990-01-05 378.30 99.77 405.00 1
1990-01-08 380.04 99.68 404.60 1
… … … … …
2023-12-22 10292.37 604.17 2053.08 1
2023-12-26 10335.98 604.55 2067.81 1
2023-12-27 10351.60 609.36 2077.49 1
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2023-12-28 10356.59 606.83 2065.61 1
2023-12-29 10327.83 606.18 2062.98 1

[8479 rows x 4 columns]

1.5.3 Check For Missing Values

[12]: # Check for any missing values in each column
perm_port.isnull().any()

[12]: Stocks_Close False
Bonds_Close False
Gold_Close False
Cash_Close False
dtype: bool

1.5.4 Permanent Portfolio DataFrame Info

[13]: df_info(perm_port)

The columns, shape, and data types are:
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 8479 entries, 1990-01-02 to 2023-12-29
Data columns (total 4 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 Stocks_Close 8479 non-null float64
1 Bonds_Close 8479 non-null float64
2 Gold_Close 8479 non-null float64
3 Cash_Close 8479 non-null int64
dtypes: float64(3), int64(1)
memory usage: 331.2 KB
None
The first 5 rows are:

Stocks_Close Bonds_Close Gold_Close Cash_Close
Date
1990-01-02 386.16 99.97 399.00 1
1990-01-03 385.17 99.73 395.00 1
1990-01-04 382.02 99.81 396.50 1
1990-01-05 378.30 99.77 405.00 1
1990-01-08 380.04 99.68 404.60 1

The last 5 rows are:

Stocks_Close Bonds_Close Gold_Close Cash_Close
Date
2023-12-22 10292.37 604.17 2053.08 1
2023-12-26 10335.98 604.55 2067.81 1
2023-12-27 10351.60 609.36 2077.49 1
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2023-12-28 10356.59 606.83 2065.61 1
2023-12-29 10327.83 606.18 2062.98 1

[14]: # Copy this <!-- INSERT_02_Perm_Port_DF_Info_HERE --> to index_temp.md
export_track_md_deps(

dep_file=dep_file,
md_filename="02_Perm_Port_DF_Info.md",
content=df_info_markdown(perm_port),
output_type="markdown",

)

� Exported and tracked: 02_Perm_Port_DF_Info.md

1.6 Execute Strategy

[15]: # List of funds to be used
fund_list = ['Stocks', 'Bonds', 'Gold', 'Cash']

# Starting cash contribution
starting_cash = 10000

# Monthly cash contribution
cash_contrib = 0

strat = strategy_harry_brown_perm_port(
fund_list=fund_list,
starting_cash=starting_cash,
cash_contrib=cash_contrib,
close_prices_df=perm_port,
rebal_month=1,
rebal_day=1,
rebal_per_high=0.35,
rebal_per_low=0.15,
excel_export=True,
pickle_export=True,
output_confirmation=True,

)

strat = strat.set_index('Date')

Strategy complete for Stocks_Bonds_Gold_Cash

[16]: df_info(strat)

The columns, shape, and data types are:
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 8479 entries, 1990-01-02 to 2023-12-29
Data columns (total 34 columns):
# Column Non-Null Count Dtype
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--- ------ -------------- -----
0 Stocks_Close 8479 non-null float64
1 Bonds_Close 8479 non-null float64
2 Gold_Close 8479 non-null float64
3 Cash_Close 8479 non-null int64
4 Stocks_BA_Shares 8479 non-null float64
5 Stocks_BA_$_Invested 8479 non-null float64
6 Stocks_BA_Port_% 8479 non-null float64
7 Bonds_BA_Shares 8479 non-null float64
8 Bonds_BA_$_Invested 8479 non-null float64
9 Bonds_BA_Port_% 8479 non-null float64
10 Gold_BA_Shares 8479 non-null float64
11 Gold_BA_$_Invested 8479 non-null float64
12 Gold_BA_Port_% 8479 non-null float64
13 Cash_BA_Shares 8479 non-null float64
14 Cash_BA_$_Invested 8479 non-null float64
15 Cash_BA_Port_% 8479 non-null float64
16 Total_BA_$_Invested 8479 non-null float64
17 Contribution 8479 non-null int64
18 Rebalance 8479 non-null object
19 Stocks_AA_Shares 8479 non-null float64
20 Stocks_AA_$_Invested 8479 non-null float64
21 Stocks_AA_Port_% 8479 non-null float64
22 Bonds_AA_Shares 8479 non-null float64
23 Bonds_AA_$_Invested 8479 non-null float64
24 Bonds_AA_Port_% 8479 non-null float64
25 Gold_AA_Shares 8479 non-null float64
26 Gold_AA_$_Invested 8479 non-null float64
27 Gold_AA_Port_% 8479 non-null float64
28 Cash_AA_Shares 8479 non-null float64
29 Cash_AA_$_Invested 8479 non-null float64
30 Cash_AA_Port_% 8479 non-null float64
31 Total_AA_$_Invested 8479 non-null float64
32 Return 8478 non-null float64
33 Cumulative_Return 8478 non-null float64
dtypes: float64(31), int64(2), object(1)
memory usage: 2.3+ MB
None
The first 5 rows are:

Stocks_Close Bonds_Close Gold_Close Cash_Close \
Date
1990-01-02 386.16 99.97 399.00 1
1990-01-03 385.17 99.73 395.00 1
1990-01-04 382.02 99.81 396.50 1
1990-01-05 378.30 99.77 405.00 1
1990-01-08 380.04 99.68 404.60 1
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Stocks_BA_Shares Stocks_BA_$_Invested Stocks_BA_Port_% \
Date
1990-01-02 6.47 2500.00 0.25
1990-01-03 6.47 2493.59 0.25
1990-01-04 6.47 2473.20 0.25
1990-01-05 6.47 2449.11 0.25
1990-01-08 6.47 2460.38 0.25

Bonds_BA_Shares Bonds_BA_$_Invested Bonds_BA_Port_% … \
Date …
1990-01-02 25.01 2500.00 0.25 …
1990-01-03 25.01 2494.02 0.25 …
1990-01-04 25.01 2496.02 0.25 …
1990-01-05 25.01 2494.92 0.25 …
1990-01-08 25.01 2492.72 0.25 …

Bonds_AA_Port_% Gold_AA_Shares Gold_AA_$_Invested \
Date
1990-01-02 0.25 6.27 2500.00
1990-01-03 0.25 6.27 2474.94
1990-01-04 0.25 6.27 2484.34
1990-01-05 0.25 6.27 2537.59
1990-01-08 0.25 6.27 2535.09

Gold_AA_Port_% Cash_AA_Shares Cash_AA_$_Invested \
Date
1990-01-02 0.25 2500.00 2500.00
1990-01-03 0.25 2500.00 2500.00
1990-01-04 0.25 2500.00 2500.00
1990-01-05 0.25 2500.00 2500.00
1990-01-08 0.25 2500.00 2500.00

Cash_AA_Port_% Total_AA_$_Invested Return Cumulative_Return
Date
1990-01-02 0.25 10000.00 NaN NaN
1990-01-03 0.25 9962.55 -0.00 1.00
1990-01-04 0.25 9953.56 -0.00 1.00
1990-01-05 0.25 9981.63 0.00 1.00
1990-01-08 0.25 9988.19 0.00 1.00

[5 rows x 34 columns]

The last 5 rows are:

Stocks_Close Bonds_Close Gold_Close Cash_Close \
Date
2023-12-22 10292.37 604.17 2053.08 1
2023-12-26 10335.98 604.55 2067.81 1
2023-12-27 10351.60 609.36 2077.49 1

11



2023-12-28 10356.59 606.83 2065.61 1
2023-12-29 10327.83 606.18 2062.98 1

Stocks_BA_Shares Stocks_BA_$_Invested Stocks_BA_Port_% \
Date
2023-12-22 1.81 18595.87 0.29
2023-12-26 1.81 18674.66 0.29
2023-12-27 1.81 18702.89 0.29
2023-12-28 1.81 18711.90 0.29
2023-12-29 1.81 18659.94 0.29

Bonds_BA_Shares Bonds_BA_$_Invested Bonds_BA_Port_% … \
Date …
2023-12-22 25.03 15124.46 0.23 …
2023-12-26 25.03 15134.20 0.23 …
2023-12-27 25.03 15254.36 0.23 …
2023-12-28 25.03 15191.10 0.23 …
2023-12-29 25.03 15175.01 0.23 …

Bonds_AA_Port_% Gold_AA_Shares Gold_AA_$_Invested \
Date
2023-12-22 0.23 8.00 16426.12
2023-12-26 0.23 8.00 16543.97
2023-12-27 0.23 8.00 16621.42
2023-12-28 0.23 8.00 16526.37
2023-12-29 0.23 8.00 16505.33

Gold_AA_Port_% Cash_AA_Shares Cash_AA_$_Invested \
Date
2023-12-22 0.25 14717.17 14717.17
2023-12-26 0.25 14717.17 14717.17
2023-12-27 0.25 14717.17 14717.17
2023-12-28 0.25 14717.17 14717.17
2023-12-29 0.25 14717.17 14717.17

Cash_AA_Port_% Total_AA_$_Invested Return Cumulative_Return
Date
2023-12-22 0.23 64863.62 0.00 6.49
2023-12-26 0.23 65070.01 0.00 6.51
2023-12-27 0.23 65295.84 0.00 6.53
2023-12-28 0.23 65146.54 -0.00 6.51
2023-12-29 0.23 65057.44 -0.00 6.51

[5 rows x 34 columns]

[17]: # Copy this <!-- INSERT_03_Strategy_HERE --> to index_temp.md
export_track_md_deps(
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dep_file=dep_file,
md_filename="03_Strategy.md",
content=df_info_markdown(strat),
output_type="markdown",

)

� Exported and tracked: 03_Strategy.md

1.7 Summary Statistics

[18]: sum_stats = summary_stats(
fund_list=fund_list,
df=strat[['Return']],
period="Daily",
use_calendar_days=False,
excel_export=True,
pickle_export=True,
output_confirmation=True,

)

strat_pre_1999 = strat[strat.index < '2000-01-01']
sum_stats_pre_1999 = summary_stats(

fund_list=fund_list,
df=strat_pre_1999[['Return']],
period="Daily",
use_calendar_days=False,
excel_export=False,
pickle_export=False,
output_confirmation=True,

)

strat_post_1999 = strat[strat.index >= '2000-01-01']
sum_stats_post_1999 = summary_stats(

fund_list=fund_list,
df=strat_post_1999[['Return']],
period="Daily",
use_calendar_days=False,
excel_export=False,
pickle_export=False,
output_confirmation=True,

)

strat_post_2009 = strat[strat.index >= '2010-01-01']
sum_stats_post_2009 = summary_stats(

fund_list=fund_list,
df=strat_post_2009[['Return']],
period="Daily",
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use_calendar_days=False,
excel_export=False,
pickle_export=False,
output_confirmation=True,

)

Summary stats complete for Stocks_Bonds_Gold_Cash
Summary stats complete for Stocks_Bonds_Gold_Cash
Summary stats complete for Stocks_Bonds_Gold_Cash
Summary stats complete for Stocks_Bonds_Gold_Cash

[19]: all_sum_stats = pd.concat([sum_stats])
all_sum_stats = all_sum_stats.rename(index={'Return': '1990 - 2023'})
all_sum_stats = pd.concat([all_sum_stats, sum_stats_pre_1999])
all_sum_stats = all_sum_stats.rename(index={'Return': 'Pre 1999'})
all_sum_stats = pd.concat([all_sum_stats, sum_stats_post_1999])
all_sum_stats = all_sum_stats.rename(index={'Return': 'Post 1999'})
all_sum_stats = pd.concat([all_sum_stats, sum_stats_post_2009])
all_sum_stats = all_sum_stats.rename(index={'Return': 'Post 2009'})
display(all_sum_stats)

Annualized Mean Annualized Volatility Annualized Sharpe Ratio \
1990 - 2023 0.06 0.06 0.96
Pre 1999 0.06 0.05 1.21
Post 1999 0.06 0.06 0.88
Post 2009 0.06 0.06 0.93

CAGR Daily Max Return Daily Max Return (Date) Daily Min Return \
1990 - 2023 0.06 0.03 2020-03-24 -0.03
Pre 1999 0.06 0.02 1999-09-28 -0.02
Post 1999 0.06 0.03 2020-03-24 -0.03
Post 2009 0.06 0.03 2020-03-24 -0.03

Daily Min Return (Date) Max Drawdown Peak Trough \
1990 - 2023 2020-03-12 -0.15 2008-03-18 2008-11-12
Pre 1999 1993-08-05 -0.06 1998-07-20 1998-08-31
Post 1999 2020-03-12 -0.15 2008-03-18 2008-11-12
Post 2009 2020-03-12 -0.13 2021-12-27 2022-10-20

Recovery Date Days to Recover MAR Ratio
1990 - 2023 2009-10-06 328 0.37
Pre 1999 1998-11-05 66 0.98
Post 1999 2009-10-06 328 0.36
Post 2009 2023-12-01 407 0.44

[20]: # Copy this <!-- INSERT_04_Summary_Stats_HERE --> to index_temp.md
export_track_md_deps(

dep_file=dep_file,
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md_filename="04_Summary_Stats.md",
content=all_sum_stats.to_markdown(floatfmt=".3f"),
output_type="markdown",

)

� Exported and tracked: 04_Summary_Stats.md

1.8 Annual Returns
[21]: # Create dataframe for the annual returns

strat_annual_returns = strat['Cumulative_Return'].resample('Y').last().
↪pct_change().dropna()

strat_annual_returns_df = strat_annual_returns.to_frame()
strat_annual_returns_df['Year'] = strat_annual_returns_df.index.year # Add a␣

↪'Year' column with just the year
strat_annual_returns_df.reset_index(drop=True, inplace=True) # Reset the index␣

↪to remove the datetime index

# Now the DataFrame will have 'Year' and 'Cumulative_Return' columns
strat_annual_returns_df = strat_annual_returns_df[['Year',␣

↪'Cumulative_Return']] # Keep only 'Year' and 'Cumulative_Return' columns
strat_annual_returns_df.rename(columns = {'Cumulative_Return':'Return'},␣

↪inplace=True)
strat_annual_returns_df.set_index('Year', inplace=True)
display(strat_annual_returns_df)

Return
Year
1991 0.10
1992 0.03
1993 0.10
1994 -0.02
1995 0.15
1996 0.05
1997 0.06
1998 0.10
1999 0.04
2000 0.00
2001 -0.01
2002 0.04
2003 0.12
2004 0.05
2005 0.06
2006 0.10
2007 0.12
2008 -0.03
2009 0.11
2010 0.14
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2011 0.07
2012 0.07
2013 -0.01
2014 0.05
2015 -0.02
2016 0.05
2017 0.09
2018 -0.01
2019 0.15
2020 0.13
2021 0.06
2022 -0.08
2023 0.11

[22]: # Copy this <!-- INSERT_05_Annual_Returns_HERE --> to index_temp.md
export_track_md_deps(

dep_file=dep_file,
md_filename="05_Annual_Returns.md",
content=strat_annual_returns_df.to_markdown(floatfmt=".3f"),
output_type="markdown",

)

� Exported and tracked: 05_Annual_Returns.md

[23]: # Export the annual returns DataFrame to Excel and pickle files
plan_name = '_'.join(fund_list)
strat_annual_returns_df.to_excel(f"{plan_name}_Annual_Returns.xlsx",␣

↪sheet_name="data")
strat_annual_returns_df.to_pickle(f"{plan_name}_Annual_Returns.pkl")

1.9 Plots
1.9.1 Plot Cumulative Return

[24]: def plot_cumulative_return(strat_df):
# Generate plot
plt.figure(figsize=(10, 5), facecolor = '#F5F5F5')

# Plotting data
plt.plot(strat_df.index, strat_df['Cumulative_Return'], label = 'Strategy␣

↪Cumulative Return', linestyle='-', color='green', linewidth=1)

# Set X axis
# x_tick_spacing = 5 # Specify the interval for x-axis ticks
# plt.gca().xaxis.set_major_locator(MultipleLocator(x_tick_spacing))
plt.gca().xaxis.set_major_locator(mdates.YearLocator())
plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%Y'))
plt.xlabel('Year', fontsize = 9)
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plt.xticks(rotation = 45, fontsize = 7)
# plt.xlim(, )

# Set Y axis
y_tick_spacing = 0.5 # Specify the interval for y-axis ticks
plt.gca().yaxis.set_major_locator(MultipleLocator(y_tick_spacing))
plt.ylabel('Cumulative Return', fontsize = 9)
plt.yticks(fontsize = 7)
# plt.ylim(0, 7.5)

# Set title, etc.
plt.title('Cumulative Return', fontsize = 12)

# Set the grid & legend
plt.tight_layout()
plt.grid(True)
plt.legend(fontsize=8)

# Save the figure
plt.savefig('06_Cumulative_Return.png', dpi=300, bbox_inches='tight')

# Display the plot
return plt.show()

[25]: plot_cumulative_return(strat)
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1.9.2 Plot Portfolio & Component Values

[26]: def plot_values(strat_df):
# Generate plot
plt.figure(figsize=(10, 5), facecolor = '#F5F5F5')

# Plotting data
plt.plot(strat_df.index, strat_df['Total_AA_$_Invested'], label='Total␣

↪Portfolio Value', linestyle='-', color='black', linewidth=1)
plt.plot(strat_df.index, strat_df['Stocks_AA_$_Invested'], label='Stocks␣

↪Position Value', linestyle='-', color='orange', linewidth=1)
plt.plot(strat_df.index, strat_df['Bonds_AA_$_Invested'], label='Bond␣

↪Position Value', linestyle='-', color='yellow', linewidth=1)
plt.plot(strat_df.index, strat_df['Gold_AA_$_Invested'], label='Gold␣

↪Position Value', linestyle='-', color='blue', linewidth=1)
plt.plot(strat_df.index, strat_df['Cash_AA_$_Invested'], label='Cash␣

↪Position Value', linestyle='-', color='brown', linewidth=1)

# Set X axis
# x_tick_spacing = 5 # Specify the interval for x-axis ticks
# plt.gca().xaxis.set_major_locator(MultipleLocator(x_tick_spacing))
plt.gca().xaxis.set_major_locator(mdates.YearLocator())
plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%Y'))
plt.xlabel('Year', fontsize = 9)
plt.xticks(rotation = 45, fontsize = 7)
# plt.xlim(, )

# Set Y axis
y_tick_spacing = 5000 # Specify the interval for y-axis ticks
plt.gca().yaxis.set_major_locator(MultipleLocator(y_tick_spacing))
plt.gca().yaxis.set_major_formatter(mtick.FuncFormatter(lambda x, pos: '{:,.

↪0f}'.format(x))) # Adding commas to y-axis labels
plt.ylabel('Total Value ($)', fontsize = 9)
plt.yticks(fontsize = 7)
# plt.ylim(0, 75000)

# Set title, etc.
plt.title('Total Values For Stocks, Bonds, Gold, and Cash Positions and␣

↪Portfolio', fontsize = 12)

# Set the grid & legend
plt.tight_layout()
plt.grid(True)
plt.legend(fontsize=8)

# Save the figure
plt.savefig('07_Portfolio_Values.png', dpi=300, bbox_inches='tight')
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# Display the plot
return plt.show()

[27]: plot_values(strat)

1.9.3 Plot Portfolio Drawdown

[28]: def plot_drawdown(strat_df):
rolling_max = strat_df['Total_AA_$_Invested'].cummax()
drawdown = (strat_df['Total_AA_$_Invested'] - rolling_max) / rolling_max *␣

↪100

# Generate plot
plt.figure(figsize=(10, 5), facecolor = '#F5F5F5')

# Plotting data
plt.plot(strat_df.index, drawdown, label='Drawdown', linestyle='-',␣

↪color='red', linewidth=1)

# Set X axis
# x_tick_spacing = 5 # Specify the interval for x-axis ticks
# plt.gca().xaxis.set_major_locator(MultipleLocator(x_tick_spacing))
plt.gca().xaxis.set_major_locator(mdates.YearLocator())
plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%Y'))
plt.xlabel('Year', fontsize = 9)
plt.xticks(rotation = 45, fontsize = 7)
# plt.xlim(, )
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# Set Y axis
y_tick_spacing = 1 # Specify the interval for y-axis ticks
plt.gca().yaxis.set_major_locator(MultipleLocator(y_tick_spacing))
# plt.gca().yaxis.set_major_formatter(mtick.FuncFormatter(lambda x, pos: '{:

↪,.0f}'.format(x))) # Adding commas to y-axis labels
plt.gca().yaxis.set_major_formatter(mtick.FuncFormatter(lambda x, pos: '{:.

↪0f}'.format(x))) # Adding 0 decimal places to y-axis labels
plt.ylabel('Drawdown (%)', fontsize = 9)
plt.yticks(fontsize = 7)
# plt.ylim(-20, 0)

# Set title, etc.
plt.title('Portfolio Drawdown', fontsize = 12)

# Set the grid & legend
plt.tight_layout()
plt.grid(True)
plt.legend(fontsize=8)

# Save the figure
plt.savefig('08_Portfolio_Drawdown.png', dpi=300, bbox_inches='tight')

# Display the plot
return plt.show()

[29]: plot_drawdown(strat)
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1.9.4 Plot Asset Weights

[30]: def plot_asset_weights(strat_df):
# Generate plot
plt.figure(figsize=(10, 5), facecolor = '#F5F5F5')

# Plotting data
plt.plot(strat_df.index, strat_df['Stocks_AA_Port_%'] * 100, label='Stocks␣

↪Portfolio Weight', linestyle='-', color='orange', linewidth=1)
plt.plot(strat_df.index, strat_df['Bonds_AA_Port_%'] * 100, label='Bonds␣

↪Portfolio Weight', linestyle='-', color='yellow', linewidth=1)
plt.plot(strat_df.index, strat_df['Gold_AA_Port_%'] * 100, label='Gold␣

↪Portfolio Weight', linestyle='-', color='blue', linewidth=1)
plt.plot(strat_df.index, strat_df['Cash_AA_Port_%'] * 100, label='Cash␣

↪Portfolio Weight', linestyle='-', color='brown', linewidth=1)

# Set X axis
# x_tick_spacing = 5 # Specify the interval for x-axis ticks
# plt.gca().xaxis.set_major_locator(MultipleLocator(x_tick_spacing))
plt.gca().xaxis.set_major_locator(mdates.YearLocator())
plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%Y'))
plt.xlabel('Year', fontsize = 9)
plt.xticks(rotation = 45, fontsize = 7)
# plt.xlim(, )

# Set Y axis
y_tick_spacing = 1 # Specify the interval for y-axis ticks
plt.gca().yaxis.set_major_locator(MultipleLocator(y_tick_spacing))
# plt.gca().yaxis.set_major_formatter(mtick.FuncFormatter(lambda x, pos: '{:

↪,.0f}'.format(x))) # Adding commas to y-axis labels
plt.ylabel('Asset Weight (%)', fontsize = 9)
plt.yticks(fontsize = 7)
# plt.ylim(14, 36)

# Set title, etc.
plt.title('Portfolio Asset Weights For Stocks, Bonds, Gold, and Cash␣

↪Positions', fontsize = 12)

# Set the grid & legend
plt.tight_layout()
plt.grid(True)
plt.legend(fontsize=8)

# Save the figure
plt.savefig('09_Portfolio_Weights.png', dpi=300, bbox_inches='tight')

# Display the plot
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return plt.show()

[31]: plot_asset_weights(strat)

1.9.5 Plot Annual Returns

[32]: def plot_annual_returns(return_df):
# Generate plot
plt.figure(figsize=(10, 5), facecolor = '#F5F5F5')

# Plotting data
plt.bar(return_df.index, return_df['Return'] * 100, label='Annual Returns',␣

↪width=0.5) # width adjusted for better spacing

# Set X axis
x_tick_spacing = 1 # Specify the interval for x-axis ticks
plt.gca().xaxis.set_major_locator(MultipleLocator(x_tick_spacing))
# plt.gca().xaxis.set_major_locator(mdates.YearLocator())
# plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%Y'))
plt.xlabel('Year', fontsize = 9)
plt.xticks(rotation = 45, fontsize = 7)
# plt.xlim(, )

# Set Y axis
y_tick_spacing = 1 # Specify the interval for y-axis ticks
plt.gca().yaxis.set_major_locator(MultipleLocator(y_tick_spacing))
# plt.gca().yaxis.set_major_formatter(mtick.FuncFormatter(lambda x, pos: '{:

↪,.0f}'.format(x))) # Adding commas to y-axis labels
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plt.ylabel('Annual Return (%)', fontsize = 9)
plt.yticks(fontsize = 7)
# plt.ylim(-20, 20)

# Set title, etc.
plt.title('Portfolio Annual Returns', fontsize = 12)

# Set the grid & legend
plt.tight_layout()
plt.grid(True)
plt.legend(fontsize=8)

# Save the figure
plt.savefig('10_Portfolio_Annual_Returns.png', dpi=300, bbox_inches='tight')

# Display the plot
return plt.show()

[33]: plot_annual_returns(strat_annual_returns_df)

1.10 Portfolio Summary Statistics For Various Rebalance Dates

[34]: # # Set ranges for months and days
# months = list(range(1, 13))
# days = list(range(1, 32))

# # Create an empty DataFrame to store the results
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# stats = pd.DataFrame(columns = ['Rebal_Month', 'Rebal_Day', 'Annualized␣
↪Mean', 'Annualized Volatility', 'Annualized Sharpe Ratio', 'CAGR',

# 'Daily Max Return', 'Daily Max Return␣
↪(Date)', 'Daily Min Return', 'Daily Min Return (Date)', 'Max Drawdown',

# 'Peak', 'Bottom', 'Recovery Date',])

# # Loop through each combination of month and day
# for month in months:
# for day in days:
# try:
# strat = strategy_harry_brown_perm_port(
# fund_list=fund_list,
# starting_cash=starting_cash,
# cash_contrib=cash_contrib,
# close_prices_df=perm_port,
# rebal_month=month,
# rebal_day=day,
# rebal_per_high=0.35,
# rebal_per_low=0.15,
# excel_export=False,
# pickle_export=False,
# output_confirmation=False,
# ).set_index('Date')

# sum_stats = summary_stats(
# fund_list=fund_list,
# df=strat[['Return']],
# period="Daily",
# excel_export=False,
# pickle_export=False,
# output_confirmation=False,
# )

# stats = pd.concat([stats, sum_stats], ignore_index=True)
# stats.loc[stats.index[-1], 'Rebal_Month'] = month
# stats.loc[stats.index[-1], 'Rebal_Day'] = day
# print(f"Month: {month}, Day: {day} - Stats added successfully.")

# except Exception as e:
# print(f"Error for month {month} and day {day}: {e}")
# continue

[35]: # # Export the stats DataFrame to Excel and pickle files
# plan_name = '_'.join(fund_list)
# stats.to_excel(f"{plan_name}_Various_Rebalance_Summary_Stats.xlsx",␣

↪sheet_name="data")
# stats.to_pickle(f"{plan_name}_Various_Rebalance_Summary_Stats.pkl")
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[36]: # Load the stats DataFrame from the pickle file
# stats = load_data(f"{plan_name}_Various_Rebalance_Summary_Stats.pkl")

[37]: # stats
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