automating-execution-jupyter-notebook-files-python-scripts-hugo-
static-site-generation

January 26, 2026

1 Automating Execution of Jupyter Notebook Files, Python
Scripts, and Hugo Static Site Generation

1.1 Python Imports

[1]: # Standard Library
import datetime
import io
import os
import random
import sys
import warnings

from datetime import datetime, timedelta
from pathlib import Path

Data Handling
import numpy as np
import pandas as pd

Data Visualization

import matplotlib.dates as mdates

import matplotlib.pyplot as plt

import matplotlib.ticker as mtick

import seaborn as sns

from matplotlib.ticker import FormatStrFormatter, FuncFormatter, MultipleLocator

Data Sources
import yfinance as yf
import pandas_datareader.data as web

Statistical Analysts
import statsmodels.api as sm

Machine Learning
from sklearn.decomposition import PCA

from sklearn.preprocessing import StandardScaler

Suppress warnings
warnings.filterwarnings("ignore")

1.2 Add Directories To Path

[2]: | # Add the source subdirectory to the system path to allow import config from,
~settings.py
current_directory = Path(os.getcwd())
website_base_directory = current_directory.parent.parent.parent
src_directory = website_base_directory / "src"
sys.path.append(str(src_directory)) if str(src_directory) not in sys.path else
~None

Import settings.py
from settings import config

Add configured directories from config to path

SOURCE_DIR = config("SOURCE_DIR")

sys.path.append(str(Path(SOURCE_DIR))) if str(Path(SOURCE_DIR)) not in sys.path
—~else None

Add other configured directories
BASE_DIR = config("BASE_DIR")

CONTENT_DIR = config("CONTENT_DIR")
POSTS_DIR = config("POSTS_DIR")

PAGES_DIR = config("PAGES_DIR")

PUBLIC_DIR = config("PUBLIC_DIR")
SOURCE_DIR = config("SOURCE_DIR")

DATA_DIR = config("DATA_DIR")
DATA_MANUAL_DIR = config("DATA_MANUAL_DIR")

Print system path
for i, path in enumerate(sys.path):
print (£"{i}: {pathl}")

: /usr/lib/python313.zip
: /usr/lib/python3.13
: /usr/1lib/python3.13/1lib-dynload

w N = O

4: /home/jared/python-virtual-envs/general-venv-p313/1lib/python3.13/site-
packages

5: /home/jared/python-virtual-envs/general-venv-p313/1ib/python3.13/site-
packages/setuptools/_vendor

6:
/home/jared/Cloud_Storage/Dropbox/Websites/jaredszajkowski.github.io_congo/src

1.3 Track Index Dependencies

[3]: # Create file to track markdown dependencies
dep_file = Path("index_dep.txt")
dep_file.write_text("")

[3]: 0

1.4 Python Functions

[4]: from export_track_md_deps import export_track_md_deps

1.5 dodo.py Functions

[6]: # Copy this <!-- INSERT 01_Import_HERE --> to index_temp.md
export_track_md_deps(
dep_file=dep_file,
md_filename="01_Imports.md",

content=
i

HAHBRHAAAR AR RARA AR AR AR AR AR R
Import Libraries
HAHRRHAAAR AR AR RARAARAHRRA AR R AR RAAA

tmport sys

Make sure the src folder is in the path
sys.path.insert (1, "./src/")

import Tre

tmport shutil
tmport subprocess
import time
tmport yaml

from colorama import Fore, Style, intit
from datetime import datetime

from os import environ, getcwd, path
from pathlib import Path

nmnn
b

output_type="python",

Exported and tracked: 01_Imports.md

[6]:|# Copy this <!-- INSERT 02 Print_Green_ HERE --> to index_temp.md
export_track_md_deps (
dep_file=dep_file,

md_filename="02_Print_Green.md",

content=
Code from lines 29-75 referenced from the UChicago
FINM 32900 - Full-Stack Quantitative Fimance course
Credit to Jeremy Bejarano
https://github.com/jmbejara

Custom reporter: Print PyDoit Text in Green

This is helpful because some tasks write to sterr and pollute the output in
the console. I don't want to mute this output, because this can sometimes
cause issues when, for example, LaTeX hangs on an error and requires

presses on the keyboard before continuing. However, I want to be able

to easily see the task lines printed by PyDott. I want them to stand out

from among all the other lines printed to the console.

from doit.reporter import ConsoleReporter
from settings import config

HAHRRHAAARRAHRA AR RRRA AR AR AR R AR R
Slurm Configuration
HHAARBHAHAAAR AR AR AR AR AR AR RRAA AR

try:
in_slurm = environ["SLURM_JOB_ID"] is mot None

except:
in_slurm

False

class GreenReporter(ConsoleReporter):
def write(self, stuff, **kwargs):
dott_mark = stuff.splet(" ")[0].1ljust(2)
task = " ".join(stuff.split(" ")[1:]).strip() + "\n"
output = (
Fore.GREEN
+ doit_mark
+ f" {path.basename(getcwd())}: "
+ task
+ Style.RESET ALL
)

self.outstream.write (output)

1f not in_slurm:
DOIT_CONFIG = {
"reporter": GreenReporter,
other config here. ..
"cleanforget": True, # Doit will forget about tasks that have been
~cleaned.

"backend": "sqlite3",
"dep_file": "./.doit-db.sqlite",
}
else:
DOIT_CONFIG = {
"backend": "sqlite3",
"dep_file": "./.doit-db.sqlite"
}
init (autoreset=True)

nmnn
b

output_type="python",

Exported and tracked: 02_Print_Green.md

[7]: # Copy this <!-- INSERT 03 Directory_Variables_ HERE --> to indez_temp.md
export_track_md_deps (
dep_file=dep_file,
md_filename="03_Directory_Variables.md",
content=
HABLRUGRR AR R AR HAYLRRGRR AU L BRHRR LR R RH Y
Set directory wariables
B e g

BASE_DIR = config("BASE DIR")

CONTENT DIR = config("CONTENT DIR")
POSTS_DIR = config("POSTS_DIR")

PAGES_DIR = config("PAGES_DIR")

PUBLIC_DIR = config("PUBLIC_DIR")
SOURCE_DIR = config("SOURCE_DIR")

DATA_DIR = config("DATA_DIR")
DATA_MANUAL_DIR = config("DATA_MANUAL_DIR")

nnn

output_type="python",

Exported and tracked: 03_Directory_Variables.md

1.6 Complete dodo.py File
""Ezecute with “doit” in the terminal."""
HURBARBURBABRA BB L BB L BB LRB AR R AR R AR ARG

Import Libraries
i

import sys

Make sure the src folder is in the path
sys.path.insert(1l, "./src/")

import re

import shutil
import subprocess
import time
import yaml

from colorama import Fore, Style, init
from datetime import datetime

from os import environ, getcwd, path
from pathlib import Path

Code from lines 29-75 referenced from the UChicago
FINM 32900 - Full-Stack Quantitative Finance course
Credit to Jeremy Bejarano

https://github.com/jmbejara

Custom reporter: Print PyDoit Text in Green

This 1s helpful because some tasks write to sterr and pollute the output in
the console. I don't want to mute this output, because this can sometimes

cause issues when, for example, LaTeX hangs on an error and requires

presses on the keyboard before continuing. However, I want to be able

to easily see the task lines printed by PyDott. I want them to stand out

from among all the other lines printed to the console.

from doit.reporter import ConsoleReporter
from settings import config

HARAAAAAA AR AR AR RRRRRRRRRARRRAAAAAAA A
Slurm Configuration
HARAAAAAA AR AR AR RRRRRRRRRARRRAAAAAAA A

try:
in_slurm = environ["SLURM JOB_ID"] is not None

except:
in_slurm

False

class GreenReporter(ConsoleReporter):
def write(self, stuff, x*kwargs):
doit_mark = stuff.split(" ") [0].1ljust(2)
task = " ".join(stuff.split(" ")[1:]1).strip() + "\n"
output = (
Fore.GREEN
+ doit_mark
+ " {path.basename(getcwd())}: "
+ task

+ Style.RESET_ALL
)

self.outstream.write (output)

if not in_slurm:
DOIT_CONFIG = {
"reporter": GreenReporter,
other config here...
"cleanforget": True, # Doit will forget about tasks that have been cleaned.
"backend": "sqlite3",
"dep_file": "./.doit-db.sqlite",
b
else:
DOIT_CONFIG = {
"backend": "sqlite3",
"dep_file": "./.doit-db.sqlite"
X

init (autoreset=True)

HARAAAAA AR AR AR RRRRRRRRRRRRRRAAAAAAAA A
Set directory wvariables
HARAAAAAA AR AR AR R AR RRRRRRRRRRRAAAAAAA A A

BASE_DIR = config("BASE_DIR")

CONTENT_DIR = config("CONTENT_DIR")
POSTS_DIR = config("POSTS_DIR")

PAGES_DIR = config("PAGES_DIR")

PUBLIC_DIR = config("PUBLIC_DIR")
SOURCE_DIR = config("SOURCE_DIR")

DATA_DIR = config("DATA_DIR")
DATA_MANUAL_DIR = config("DATA_MANUAL_DIR")

HARAHAAAAA AR AR AR AR BB RRRRRRRRARAAAAAAAA A
Helper functions
HARAHAAAA AR AR AR AR BB R AR RRRRRRRAAAAAAA A A

def copy_file(origin_path, destination_path, mkdir=True):
"""Create a Python action for copying a file."""

def _copy_file():
origin = Path(origin_path)
dest = Path(destination_path)
if mkdir:
dest.parent.mkdir(parents=True, exist_ok=True)
shutil.copy2(origin, dest)

return _copy_£file

def extract_front_matter(index_path):
"""Extract front matter as a dict from a Hugo index.md file.
text = index_path.read_text()

nimnn

match = re.search(r"(?s) " ——-(.*?)-—=", text)
if match:

return yaml.safe_load(match.group(1))
return {}

def notebook_source_hash(notebook_path):
""1"Compute a SHA-256 hash of the notebook's code and markdown cells. This includes all wht
import nbformat
import hashlib

with open(notebook_path, "r", encoding="utf-8") as f:
nb = nbformat.read(f, as_version=4)

relevant_cells = [
cell["source"]
for cell in mnb.cells
if cell.cell_type in {"code", "markdown"}
]
full_content = "\n".join(relevant_cells)
return hashlib.sha256(full_content.encode("utf-8")) .hexdigest ()

def clean_pdf_export_pngs(subdir, notebook_name):
"""Remove .png files created by nbconvert during PDF exzport."""
pattern = f"{notebook_name} *_*.png"
deleted = False
for file in subdir.glob(pattern):
print(f" Removing nbconvert temp image: {filel}")
file.unlink()
deleted = True
if not deleted:
print(f" No temp PNGs to remove for {notebook_namel}")

i
PyDoit tasks
HARHHAA AR AR AR R BB BB RRRRRRRARAAAAAA A A

def task_config():
"""Create empty directories for content, page, post, and public <f they don't exist"""
return {
"actions": ["ipython ./src/settings.py"],
"file_dep": ["./src/settings.py"],
"targets": [CONTENT_DIR, PAGES_DIR, POSTS_DIR, PUBLIC_DIR],
"verbosity": 2,
"clean": [], # Don't clean these files by default.

def task_list_posts_subdirs():
"""Create a list of the subdirectories of the posts directory"""
return {
"actions": ["python ./src/list_posts_subdirs.py"],
"file_dep": ["./src/settings.py"],
"targets": [POSTS DIR],
"verbosity": 2,
"clean": [], # Don't clean these files by default.

def task_run_post_notebooks():
"""Execute motebooks that match their subdirectory mames and only when code or markdown co
for subdir in POSTS_DIR.iterdir():
if not subdir.is dir(Q):
continue

notebook_path = subdir / f'"{subdir.name}.ipynb"
if not notebook_path.exists():
continue # Skip subdirs with no matching notebook

hash file = subdir / f"{subdir.name}.last source hash"
log_file = subdir / f'"{subdir.name}.log"

def source_has_changed(path=notebook_path, hash_path=hash_file, log_path=log_file):
current_hash = notebook_source_hash(path)
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")

if hash_path.existsQ:
0old_hash = hash_path.read_text().strip()
if current_hash != old_hash:
print(f" Change detected in {path.name}")
return False # needs re-run

No change -+ log as skipped
with log_path.open("a") as log:
log.write(f" [{timestamp}] Skipped (no changes): {path.name}\n")
print(f" No change in hash for {path.name}")
return True

No previous hash =+ must run
print(f" No previous hash found for {path.name}")
return False

def run_and_log(path=notebook_path, hash_path=hash_file, log_path=log_file):
start_time = time.time()
subprocess.run([

"jupyter", "nbconvert",
"--execute",
"-—to", "notebook",
"--inplace",
"--log-level=ERROR",
str(path)
], check=True)
elapsed = round(time.time() - start_time, 2)

new_hash = notebook_source_hash(path)
hash_path.write_text(new_hash)
print(f" Saved new hash for {path.name}")

timestamp = datetime.now().strftime (", Y-%m-%d %H:%M:%S")
log_msg = f"[{timestamp}] Executed {path.name} in {elapsed}s\n"
with log_path.open("a") as f:

f.write(log_msg)

print (log_msg.strip())

yield {
"name'": subdir.name,
"actions": [run_and_log],
"file_dep": [notebook_path],
"uptodate": [source_has_changed],

"verbosity": 2,

def task_export_post_notebooks():
"""Ezxport executed notebooks to HTML and PDF, and clean temp PNGs"""
for subdir in POSTS_DIR.iterdir():
if not subdir.is dir():
continue

notebook_name = subdir.name

notebook_path = subdir / f'"{notebook_namel}.ipynb"
html_output = subdir / f"{notebook_namel}.html"
pdf_output = subdir / f"{notebook_name}.pdf"

if not notebook_path.exists():

continue

yield {
"name": notebook_name,
"actions": [

f"jupyter nbconvert --to=html --log-level=WARN --output={html_output} {noteboo]
f'"jupyter nbconvert --to=pdf --log-level=WARN --output={pdf_output} {notebook_|
(clean_pdf_export_pngs, [subdir, notebook_name])

10

1,

"file_dep": [notebook_path],

"targets": [html_output, pdf_output],

"verbosity": 2,

"clean": []1, # Don't clean these files by default.

def task_build_post_indices():
"""Run butld_index.py in each post subdirectory to generate index.md"""
script_path = SOURCE_DIR / "build_index.py"

for subdir in POSTS DIR.iterdir():
if subdir.is_dir() and (subdir / "index_temp.md").exists():
def run_script(subdir=subdir):
subprocess.run(
["python", str(script_path)],
cwd=subdir,
check=True

yield {

"name": subdir.name,

"actions": [run_script],

"file_dep": [
subdir / "index_temp.md",
subdir / "index_dep.txt",
script_path,

1,

"targets": [subdir / "index.md"],

"verbosity": 2,

"clean": [1, # Don't clean these files by default.

def task_clean_public():
"""Remove the Hugo public directory before rebuilding the site.
def remove_public():
if PUBLIC_DIR.exists():
shutil.rmtree (PUBLIC_DIR)
print(f" Deleted {PUBLIC_DIR}")
else:
print(f" {PUBLIC_DIR} does not exist, nothing to delete.")
return {
"actions": [remove_public],
"verbosity": 2,
"clean": [], # Don't clean these files by default.

nmnn

def task_build_site():

11

"""Butld the Hugo static site"""
return {
"actions": ["hugo"'],
"task_dep": ["clean_public"],
"verbosity": 2,
"clean": [], # Don't clean these files by default.

def task_copy_notebook_exports():
"niCopy motebook HTML exzports into the correct Hugo public/ date-based folders"""
for subdir in POSTS_DIR.iterdir():
if subdir.is_dir(Q):
html_file = subdir / f"{subdir.name}.html"
index_md = subdir / "index.md"

if not html_file.exists() or not index_md.exists():
continue

Ezxtract slug and date from front matter
front_matter = extract_front_matter(index_md)
slug = front_matter.get("slug", subdir.name)
date_str = front_matter.get("date")
if not date_str:

continue

0ld functionality to format path based on date

Format path like: public/YYYY/MM/DD/slug/

date_obj = datetime. fromisoformat (date_str)

public_path = PUBLIC_DIR / f"{date_obj:Y//m/%d}" / slug
target_path = public_path / f"{slug}.html"

New functiomnality to ignore date and just use slug
Format path like: public/posts/slug/

date_obj = datetime.fromisoformat(date_str)
public_path = PUBLIC_DIR / "posts" / slug
target_path = public_path / f'"{slug}.html"

def copy_html(src=html_file, dest=target_path):
dest.parent .mkdir (parents=True, exist_ok=True)
shutil.copy2(src, dest)
print(f" Copied {src} - {destl}")

yield {
"name": subdir.name,
"actions": [copy_html],
"file_dep": [html_file, index_md],
"targets": [target_path],
"task_dep": ["build_site"],

12

"verbosity": 2,
"clean": [1, # Don't clean these files by default.

def task_copy_about_me_exports():
"nnCopy all HTML files from the about-me page to the Hugo public/ folder"""
src_dir = PAGES_DIR / "about-me"
dest_dir = PUBLIC_DIR / "about-me"

html_files = list(src_dir.glob("*.html"))
if not html_files:
return # Skip if no HIML files found

def copy_all_html():
dest_dir.mkdir(parents=True, exist_ok=True)
for html file in html_files:
dest_path = dest_dir / html_file.name
shutil.copy2(html_file, dest_path)
print(f" Copied {html_file} - {dest_pathl}")

return {
"actions": [copy_all_html],
"file_dep": html_files,
"targets": [dest_dir / f.name for f in html_files],
"task_dep": ["build_site"],
"verbosity": 2,
"clean": [1, # Don't clean these files by default.

def task_create_schwab_callback():
"ntCreate a Schwab callback URL by creating /public/schwab_callback/index.html and placing
def create_callback():
callback_path = PUBLIC_DIR / "schwab_callback" / "index.html"
callback_path.parent.mkdir(parents=True, exist_ok=True)
html = """<IDOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8" />
<title>Schwab OAuth Code</title>
<script>
const params = new URLSearchParams(window.location.search);
const code = params.get("code");
document.write("<hi1>Authorization Code:</h1><p>" + code + "</p>");
</script>
</head>
<body></body>
</html>"""
with open(callback_path, "w") as f:

13

f.write(html)
print(f" Created Schwab callback page at {callback_pathl}")

return {
"actions": [create_callback],
"task_dep": ["copy_notebook_exports", "clean_public"],
"verbosity": 2,
"clean": [], # Don't clean these files by default.

def task_deploy_site():
"""Prompt for a commit message and push to GitHub"""
def commit_and_push():
message = input("What is the commit message? ")
if not message.strip():
print(" Commit message cannot be empty.")
return 1 # signal failure

Stage and commit all changes

subprocess.run(["git", "add", "."], check=True)
subprocess.run(["git", "commit", "-am", message], check=True)
subprocess.run(["git", "push"], check=True)

print(" Pushed to GitHub.")

return {
"actions": [commit_and_push],
"task_dep": ["create_schwab_callback"],
"verbosity": 2,
"clean": [1, # Don't clean these files by default.

Uncomment the following to create a single task that runs all steps in order

def task_build_all():

return {

"actions": None,

"task_dep": [
"run_post_notebooks",
"export_post_notebooks"”,
"build_post_indices”,
"clean_public”,
"build_site”,
"copy_motebook_exports”,
"copy_about_me_exzports”,
"create_schwab_callback”,
"deploy_site”,

FHORH RO OR R W R W OB R ™R

14

1.7 Complete settings.py File

nmnn

Load project configurations from .env files.
Provides easy access to paths and credentials used in the project.
Meant to be used as an imported module.

If “settings.py” is run on its own, %t will create the appropriate
directories.

For information about the rationale behind decouple and this module,
see https://pypi.org/project/python-decouple/

Note that decouple mentions that it will help to emsure that

the project has "only one configuration module to rule all your instances.”
Thts is achieved by putting all the configuration into the “.env” file.

You can have different sets of wvariables for difference instances,

such as ".env.development™ or .env.production . You would only

need to copy over the settings from one into “.env” to switch

over to the other configuration, for example.

nimnn

from decouple import config as _config
from pandas import to_datetime

from pathlib import Path

from platform import system

def get_os():

os_name = system()

if os_name == "Windows":
return "windows"

elif os_name == "Darwin'":
return "nix"

elif os_name == "Linux":
return "nix"

else:
return "unknown"

def if_relative_make_abs(relative_dir, path):
"""If a relative path 7s given, make it absolute, assuming
that it is relative to the project root directory (BASE_DIR)

Ezample

>>> if relative_make_abs(Path('_data'))
WindowsPath('C:/Users/jdoe/GitRepositories/blank_project/_data')

15

>>> 4f_relative_make_abs (Path("C:/Users/jdoe/GitRepositories/blank_project/_output"))
WindowsPath('C:/Users/jdoe/GitRepositories/blank_project/_output')

nnn

path = Path(path)
if path.is_absolute(Q):
abs_path = path.resolve()
else:
abs_path = (d[relative_dir] / path).resolve()
return abs_path

Initialize the dictionary to hold all the settings
d = {}

Get the 0S type
d["0S_TYPE"] = get_os()

Absolute path to root directory of the project
d["BASE_DIR"] = Path(__file__).absolute().parent.parent

Get the "Websites" directory
d["WEBSITES_DIR"] = d["BASE_DIR"].parent

fmt: off
Other .ewvn variables
d["ENV_PATH"] = Path.home() / "Cloud_Storage/Dropbox/.env"

Paths

d["CONTENT_DIR"] = if_relative_make_abs(relative_dir="BASE_DIR", path=_config('CONTENT_DIR', d
d["POSTS_DIR"] if_relative_make_abs(relative_dir="BASE_DIR", path=_config('POSTS_DIR', defau
d["PAGES_DIR"] if_relative_make_abs(relative_dir="BASE_DIR", path=_config('PAGES_DIR', defau
d["PUBLIC_DIR"] if_relative_make_abs(relative_dir="BASE_DIR", path=_config('PUBLIC_DIR', def
d["SOURCE_DIR"] = if_relative_make_abs(relative_dir="BASE_DIR", path=_config('SOURCE_DIR', def
d["DATA_DIR"] = if_relative_make_abs(relative_dir="WEBSITES_DIR", path=_config('DATA_DIR', def
d["DATA_MANUAL_DIR"] = if_relative_make_abs(relative_dir="WEBSITES_DIR", path=_config('DATA_MA

0ld configuration that put DATA_DIR relative to BASE_DIR
d["DATA_DIR"] = 4f_relative_make_abs(_config('DATA_DIR', default=Path('Data'), cast=Path))
d["DATA_MANUAL_DIR"] = 4f relative_make_abs(_config('DATA_MANUAL_DIR', default=Path('Data_Ma

fmt: on
Print the dictionary to check the walues
for key, value in d.items():

print (f"{key}: {value}")

Name of Stata Ezecutable in path
if d["OS_TYPE"] == "windows":

16

d["STATA_EXE"] = _config("STATA_EXE", default="StataMP-64.exe")
elif A["OS_TYPE"] == "nix":

d["STATA_EXE"] = _config("STATA EXE", default="stata-mp")
else:

raise ValueError ("Unknown 0S type")

def config(*args, **kwargs):
key = args[0]
default = kwargs.get("default", None)
cast = kwargs.get("cast", None)
if key in d:
var = d[key]
if default is not None:
raise ValueError(
f"Default for {key} already exists. Check your settings.py file."
)
if cast is not None:
Allows for re—emphasizing the type of the wvariable
But does not allow for changing the type of the wvariable
1f the variable is defined in the settings.py file
if type(cast(var)) is not type(var):
raise ValueError(
f"Type for {key} is already set. Check your settings.py file."

else:
If the variable is not defined in the settings.py file,
then fall back to using decouple normally.
var = _config(xargs, *xkwargs)

return var

print (config ("DATA_DIR"))
print (type(config("DATA_DIR")))

test_dir = config("DATA_DIR")
print (f"Test directory: {test_dir}t")
print (f"Test directory type: {type(test_dir)}")

def create_dirs():
If they don't exist, create the _data and _output directories
d["CONTENT_DIR"] .mkdir(parents=True, exist_ok=True)
d["PAGES_DIR"] .mkdir(parents=True, exist_ok=True)
d["POSTS_DIR"] .mkdir (parents=True, exist_ok=True)
d["PUBLIC_DIR"] .mkdir (parents=True, exist_ok=True)
d["SOURCE_DIR"] .mkdir(parents=True, exist_ok=True)
d["DATA_DIR"] .mkdir (parents=True, exist_ok=True)
d["DATA_MANUAL_DIR"] .mkdir(parents=True, exist_ok=True)

17

if

__name__ == "

create_dirs()

main__":

18

	Automating Execution of Jupyter Notebook Files, Python Scripts, and Hugo Static Site Generation
	Python Imports
	Add Directories To Path
	Track Index Dependencies
	Python Functions
	dodo.py Functions
	Complete dodo.py File
	Complete settings.py File

