asset-class-performance-fed-policy-cycles
January 26, 2026

1 Performance Of Various Asset Classes During Fed Policy Cycles

1.1 Python Imports

[1]: | # Standard Library
import datetime
import io
import os
import random
import sys
import warnings

from datetime import datetime, timedelta
from pathlib import Path

Data Handling
import numpy as np
import pandas as pd

Data Visualization

import matplotlib.dates as mdates

import matplotlib.pyplot as plt

import matplotlib.ticker as mtick

import seaborn as sns

from matplotlib.ticker import FormatStrFormatter, FuncFormatter, MultipleLocator

Data Sources
import yfinance as yf
import pandas_datareader.data as web

Statistical Analysis
import statsmodels.api as sm

Machine Learning
from sklearn.decomposition import PCA

from sklearn.preprocessing import StandardScaler

Suppress warnings

warnings.filterwarnings("ignore")

1.2 Add Directories To Path

[2]: # Add the source subdirectory to the system path to allow import config from,
~settings.py
current_directory = Path(os.getcwd())
website_base_directory = current_directory.parent.parent.parent
src_directory = website_base_directory / "src"
sys.path.append(str(src_directory)) if str(src_directory) not in sys.path else
—None

Import settings.py
from settings import config

Add configured directories from config to path

SOURCE_DIR = config("SOURCE_DIR")

sys.path.append(str(Path(SOURCE_DIR))) if str(Path(SOURCE_DIR)) not in sys.path,
—else None

Add other configured directories
BASE_DIR = config("BASE_DIR")
CONTENT_DIR = config("CONTENT_DIR")

POSTS_DIR = config("POSTS_DIR")
PAGES_DIR = config("PAGES_DIR")
PUBLIC_DIR = config("PUBLIC_DIR")

SOURCE_DIR = config("SOURCE_DIR")
DATA_DIR = config("DATA_DIR")
DATA_MANUAL_DIR = config("DATA_MANUAL_DIR")

Print system path
for i, path in enumerate(sys.path):
print(£"{i}: {pathl}")

: /usr/lib/python313.zip
: /usr/1lib/python3.13
: /usr/1lib/python3.13/1ib-dynload

w N = O

4: /home/jared/python-virtual-envs/general-venv-p313/1ib/python3.13/site-
packages

5: /home/jared/python-virtual-envs/general-venv-p313/1ib/python3.13/site-
packages/setuptools/_vendor

6:
/home/jared/Cloud_Storage/Dropbox/Websites/jaredszajkowski.github.io_congo/src

[3]:

[3]:

[4] :

[5]:

[6]:

1.3 Track Index Dependencies

Create file to track markdown dependencies
dep_file = Path("index_dep.txt")
dep_file.write_text("")

0

1.4 Python Functions

from calc_fed_cycle_asset_performance import calc_fed_cycle_asset_performance

from df_info import df_info

from df_info_markdown import df_info_markdown

from export_track_md_deps import export_track_md_deps

from load_data import load_data

from pandas_set_decimal_places import pandas_set_decimal_places

from plot_bar_returns_ffr_change import plot_bar_returns_ffr_change

from plot_timeseries import plot_timeseries

from plot_scatter_regression_ffr_vs_returns import,
~plot_scatter_regression_ffr_vs_returns

from sm_ols_summary_markdown import sm_ols_summary_markdown

from summary_stats import summary_stats

from yf_pull_data import yf_pull_data

1.5 Data Overview

Set timeframe
start_date = "2004-11-30" # GLD inception (month end)
end_date = "2025-10-31"

1.5.1 Acquire & Plot Fed Funds Data

Set decimal places
pandas_set_decimal_places(4)

Pull Effective Fed Funds Rate from FRED

fedfunds = web.DataReader ("FEDFUNDS", "fred", start="1900-01-01", end=datetime.
~today())

fedfunds ["FEDFUNDS"] = fedfunds["FEDFUNDS"] / 100 # Convert to decimal

Resample to monthly frequency and compute change in rate

fedfunds_monthly = fedfunds.resample("M").last()

fedfunds_monthly = fedfunds_monthly[(fedfunds_monthly.index >= pd.
~to_datetime(start_date)) & (fedfunds_monthly.index <= pd.
~to_datetime(end_date))]

fedfunds_monthly["FedFunds_Change"] = fedfunds_monthly["FEDFUNDS"].diff ()

[7]1:

[8]1:

[9]1:

df_info(fedfunds_monthly)

The columns, shape, and data types are:
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 252 entries, 2004-11-30 to 2025-10-31

Freq: ME
Data columns (total 2 columns):

Column Non-Null Count Dtype

0 FEDFUNDS 252 non-null float64

1 FedFunds_Change 251 non-null float64
dtypes: float64(2)
memory usage: 5.9 KB
None
The first 5 rows are:

FEDFUNDS FedFunds_Change

DATE

2004-11-30 0.0193 NaN
2004-12-31 0.0216 0.0023
2005-01-31 0.0228 0.0012
2005-02-28 0.0250 0.0022
2005-03-31 0.0263 0.0013

The last 5 rows are:

FEDFUNDS FedFunds_Change

DATE

2025-06-30 0.0433 0.0000
2025-07-31 0.0433 0.0000
2025-08-31 0.0433 0.0000
2025-09-30 0.0422 -0.0011
2025-10-31 0.0409 -0.0013

Copy this <!-- INSERT 01_Fed_Funds_Monthly_Rate_Change_HERE --> to index_temp.
<md
export_track_md_deps(
dep_file=dep_file,
md_filename="01_Fed_Funds_Monthly_Rate_Change.md",
content=df_info_markdown(df=fedfunds_monthly, decimal_places=4),
output_type="markdown",

Exported and tracked: 01_Fed_Funds_Monthly_Rate_Change.md

plot_timeseries(
price_df=fedfunds_monthly,
plot_start_date=start_date,
plot_end_date=end_date,

plot_columns=["FEDFUNDS"],
title="Fed Funds Rate",
x_label="Date",
x_format="Year",
x_tick_rotation=45,
y_label="Rate (%)",
y_format="Percentage",
y_format_decimal_places=1,
y_tick_spacing=0.005,
grid=True,

legend=False,
export_plot=True,
plot_file_name="01_Fed_Funds_Rate",

)
Fed Funds Rate
5.5%
5.0% -
4.5% A
4.0% -
3.5% -
R 3.0%-
% 2.5% |
2.0% -
1.5% A
1.0% A
0.5% -
0.0% -
L AR S A (i U e U g

[10]: plot_timeseries(
price_df=fedfunds_monthly,
plot_start_date=start_date,
plot_end_date=end_date,
plot_columns=["FedFunds_Change"],
title="Fed Funds Change In Rate",
x_label="Date",
x_format="Year",
x_tick_rotation=45,
y_label="Rate (%)",

[11]:

y_format="Percentage",
y_format_decimal_places=2,
y_tick_spacing=0.0025,

grid=True,

legend=False,

export_plot=True,
plot_file_name="01_Fed_Funds_Change_In_Rate",

Fed Funds Change In Rate

0.75% -

0.50% -

0.25% -

0.00% +

—0.25%

Rate (%)

1.5.2 Define Fed Policy Cycles

Define manually specified Fed policy cycles
fed_cycles = [

#

FHOH R R OR W OWH R HRR

("2002-01-01", "2003-07-01"),
("2003-07-01", "2004-06-01"),
("2004-06-01", "2006-07-01"),
("2004-11-01", "2006-07-01"),
("2006-07-01", "2007-07-01"),
("2007-07-01", "2008-12-01"),
("2008-12-01", "2015-11-01"),
("2015-11-01", "2019-01-01"),
("2019-01-01", "2019-07-01"),
("2019-07-01", "2020-04-01"),
("2020-04-01", "2022-02-01"),
("2022-02-01", "2023-08-01"),

[12]:

[13]:

("2023-08-01", "2024-08-01"),
("2024-08-01", datetime.today().strftime('fY-/m-7d"')),
]

Optional: assign a mame to each cycle
cycle_labels = [f"Cycle {i+1}" for i in range(len(fed_cycles))]

Define manually specified Fed policy cycles

fed_cycles = [
("2004-11-01", "2006-07-01"),
("2006-07-01", "2007-07-01"),
("2007-07-01", "2008-12-01"),
("2008-12-01", "2015-11-01"),
("2015-11-01", "2019-01-01"),
("2019-01-01", "2019-07-01"),
("2019-07-01", "2020-04-01"),
("2020-04-01", "2022-02-01"),
("2022-02-01", "2023-08-01"),
("2023-08-01", "2024-08-01"),
("2024-08-01", datetime.today() .strftime('%Y-%m-%d"')),

Optional: assign a name to each cycle
cycle_labels = [f"Cycle {i+1}" for i in range(len(fed_cycles))]

Set decimal places
pandas_set_decimal_places(4)

Calc changes by fed cycle defined above
fed_changes = []

for (start, end) in fed_cycles:
start = pd.to_datetime(start)
end = pd.to_datetime(end)

try:
rate_start = fedfunds.loc[start, "FEDFUNDS"]
except KeyError:
rate_start = fedfunds.loc[:start].iloc[-1] ["FEDFUNDS"]

try:
rate_end = fedfunds.loc[end, "FEDFUNDS"]
except KeyError:
rate_end = fedfunds.loc[:end].iloc[-1] ["FEDFUNDS"]

change = rate_end - rate_start
fed_changes.append(change)

fed_changes_df = pd.DataFrame ({
"Cycle": cycle_labels,
"FedFunds_Change": fed_changes
b

fed_changes_df

[13]: Cycle FedFunds_Change
0 Cycle 1 0.0331
1 Cycle 2 0.0002
2 Cycle 3 -0.0510
3 Cycle 4 -0.0004
4 Cycle 5 0.0228
5 Cycle 6 0.0000
6 Cycle 7 -0.0235
7 Cycle 8 0.0003
8 Cycle 9 0.05625
9 Cycle 10 0.0000
10 Cycle 11 -0.0161

[14]: # Copy this <!-- INSERT 01_Fed_Funds_Cycle_Change_ HERE --> to indez_temp.md
export_track_md_deps(
dep_file=dep_file,
md_filename="01_Fed_Funds_Cycle_Change.md",
content=fed_changes_df.to_markdown(floatfmt=".4f"),
output_type="markdown",

Exported and tracked: 01_Fed_Funds_Cycle_Change.md

1.6 Return Performance By Fed Policy Cycle
1.6.1 Stocks (SPY)

[15]: # Set decimal places
pandas_set_decimal_places(2)

yf_pull_data(
base_directory=DATA_DIR,
ticker="SPY",
source="Yahoo_Finance",
asset_class="Exchange_Traded_Funds",
excel_export=True,
pickle_export=True,
output_confirmation=True,

)

Dokttt skokskokskok ok kokokokok 1 00k kokkokkokkok ok ok ok ok kokkkkk] 1 of 1 completed

The first and last date of data for SPY is:

Close High Low Open Volume
Date
1993-01-29 24.24 24.26 24.14 24.26 1003200

Close High Low Open Volume
Date
2026-01-23 689.23 690.96 687.16 688.15 63016300

Yahoo Finance data complete for SPY

[15]: Close High Low Open Volume
Date
1993-01-29 24.24 24.26 24.14 24.26 1003200
1993-02-01 24.41 24.41 24.26 24.26 480500
1993-02-02 24.47 24.48 24.34 24.40 201300
1993-02-03 24.72 24.74 24.48 24.50 529400
1993-02-04 24.83 24.88 24.53 24.81 531500

2026-01-16 691.66 694.25 690.10 693.66 79289200
2026-01-20 677.58 684.77 676.57 681.49 111623300
2026-01-21 685.40 688.74 678.13 679.65 127844500
2026-01-22 688.98 691.13 686.92 689.85 77112200
2026-01-23 689.23 690.96 687.16 688.15 63016300

[8303 rows x 5 columns]

[16]: spy = load_data(
base_directory=DATA_DIR,
ticker="SPY",
source="Yahoo_Finance",
asset_class="Exchange_Traded_Funds",
timeframe="Daily",
file_format="pickle",

Filter SPY to date range
spy = spyl(spy.index >= pd.to_datetime(start_date)) & (spy.index <= pd.
~to_datetime(end_date))]

Resample to monthly frequency
spy_monthly = spy.resample("M").last()
spy_monthly["Monthly_Return"] = spy_monthly["Close"].pct_change()

[17]: df_info(spy_monthly)

The columns, shape, and data types are:
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 252 entries, 2004-11-30 to 2025-10-31

Freq: ME

Data columns (total 6 columns):

Column

0 Close
1 High
2 Low
3 Open
4 Volume

Non-Null Count

252

5 Monthly_Return 251
dtypes: float64(5), int64(1)

memory usage:

None

13.8 KB

The first 5 rows are:

Date

2004-11-30
2004-12-31
2005-01-31
2005-02-28
2005-03-31

The last 5

Date

2025-06-30
2025-07-31
2025-08-31
2025-09-30
2025-10-31

[18]:

Copy this <!--

Close High
79.60 79.83
81.99 82.53
80.15 80.22
81.83 82.28
80.33 80.67

rows are:

Close High
614.33 615.69
628.48 636.20
641.37 644.15
664.22 664.69
680.05 683.06

export_track_md_deps(
dep_file=dep_file,
md_filename="02_SPY_Monthly.md",
content=df_info_markdown(df=spy_monthly, decimal_places=2),
output_type="markdown",

non-null
non-null
non-null
non-null
non-null

Low

79.43
81.95
79.85
81.43
80.27

Low

611.53
627.17
639.47
659.66
677.24

Open

79.67
82.28
80.01
82.18
80.49

613.86
635.81
643.78
660.98
683.02

float64
float64
float64
float64
int64

float64

Volume

53685200
28648800
52532700
69381300
64575400

Open

Exported and tracked: 02_SPY_Monthly.md

[19]: plot_timeseries(
price_df=spy,
plot_start_date=start_date,

10

Volume

Monthly_Return

NaN
0.03
-0.02
0.02
-0.02

92502500
103385200
74522200
86288000
87164100

INSERT _02_SPY_Monthly_HERE --> to indez_temp.

Monthly_Return

0.05
0.02
0.02
0.04
0.02

md

plot_end_date=end_date,
plot_columns=["Close"],
title="SPY Daily Close Price",
x_label="Date",
x_format="Year",
x_tick_rotation=45,
y_label="Price ($)",
y_format="Decimal",
y_format_decimal_places=0,
y_tick_spacing=50,

grid=True,

legend=False,
export_plot=True,
plot_file_name="02_SPY_Price",

SPY Daily Close Price

Price ($)

[20]: spy_cycle_df = calc_fed_cycle_asset_performance (
fed_cycles=fed_cycles,
cycle_labels=cycle_labels,
fed_changes=fed_changes,
monthly_df=spy_monthly,

spy_cycle_df

11

[20] :

O O W N~ O

Cycle Start
Cycle 1 2004-11-01
Cycle 2 2006-07-01
Cycle 3 2007-07-01
Cycle 4 2008-12-01
Cycle 5 2015-11-01
Cycle 6 2019-01-01
Cycle 7 2019-07-01
Cycle 8 2020-04-01
Cycle 9 2022-02-01

Cycle 10 2023-08-01
Cycle 11 2024-08-01

CumulativeReturnPct
11.32
20.36

-38.55
167.34
28.30
18.33
-10.67
79.13
4.18
22.00
25.72

AnnualizedReturn AnnualizedReturnPct

0.07
0.20
-0.29
0.15
0.08
.40
.14
.37
.03
.22
.20

|
o O

O O O O

FedFundsChange_bps
331.00

2.00

-510.00

-4.00

228.00

0.00

-235.00

End Months
2006-07-01 20
2007-07-01 12
2008-12-01 17
2015-11-01 83
2019-01-01 38
2019-07-01 6
2020-04-01 9
2022-02-01 22
2023-08-01 18
2024-08-01 12
2026-01-26 15

AverageMonthlyReturn
0.01
0.02

-0.03
0.01
0.01
0.03
-0.01
0.03
0.00
0.02
0.02

6.64
20.36
-29.09
15.28
8.19
40.01
-13.96
37.43
2.77
22.00
20.09

FFR_AnnualizedChange
0.02

0.00

-0.04

-0.00

0.01

0.00

-0.03

12

CumulativeReturn \

AverageMonthlyReturnPct \

O O O O O O O O O o

08

|
o O

O O O O

.11
.20
.39
.67
.28
.18
.11
.79
.04
.22
.26

0.59
1.57
-2.67
1.28
0.70
.95
-1.10
.78
.40
.75
.59

N

= = O N

Volatility FedFundsChange
0.
.07
.19
.15
.11
.18
.19
.16
.21
.15
.11

0.03
0.00
-0.05
-0.00
0.02
0.00
-0.02
0.00
0.05
0.00
-0.02

FFR_AnnualizedChange_bps

198.60
2.00
-360.00
-0.58
72.00
0.00
-313.33

[21]:

[22] :

7 3.00 0.00

8 525.00 0.03

9 0.00 0.00

10 -161.00 -0.01
Label

0 Cycle 1, 2004-11-01 to 2006-07-01

1 Cycle 2, 2006-07-01 to 2007-07-01

2 Cycle 3, 2007-07-01 to 2008-12-01

3 Cycle 4, 2008-12-01 to 2015-11-01

4 Cycle 5, 2015-11-01 to 2019-01-01

5 Cycle 6, 2019-01-01 to 2019-07-01

6 Cycle 7, 2019-07-01 to 2020-04-01

7 Cycle 8, 2020-04-01 to 2022-02-01

8 Cycle 9, 2022-02-01 to 2023-08-01

9 Cycle 10, 2023-08-01 to 2024-08-01

10 Cycle 11, 2024-08-01 to 2026-01-26

1.64
350.00
0.00
-128.80

Copy this <!-- INSERT 02 _SPY_Cycle DF_HERE --> to index_temp.md

export_track_md_deps(
dep_file=dep_file,
md_filename="02_SPY_Cycle_DF.md",
content=spy_cycle_df.to_markdown(floatfmt=".2f"),
output_type="markdown",

Exported and tracked: 02_SPY_Cycle_DF.md

plot_bar_returns_ffr_change(
cycle_df=spy_cycle_df,
asset_label="SPY",
annualized_or_cumulative="Cumulative",
index_num="02",

13

SPY Cumulative Return by Fed Policy Cycle With Cumulative Change in Fed Funds Rate

AFFR: -4bps
150 A
g
£ 1001
) 79.1%
& LFFR: 3bps
[
=
T
E . 28.3%
: 25.7%
3 20.4% AFFR: 228bps 18.3% 22.0% i
O 11.3% AFFR: 2bps AFFR: Obps AFFR: OBpETRLEI0PS
T AR 331bp' 4.2%
AFFR: 525bp:
oo | o
AFFR: -235bps
-38.6%
AFER: -510bps
3 > > N NS & & & & & °
A N v "3 N 4 \ v & & "
N N o " o N N o S N BN
¢ & F Y g
S o o S) S S S S J J
v v % v Vv v Vv v Vv v Vv
2 © il & © & < © o < <9
N N o ¥ N N 3 o o 1N S
= I AN ~Y X gV N S &
W o N Sl el O %’ Q v] '
§ o $ $ N 3\ N 3 Qv N SV
% v v 0% % v v v v Vv Vv
% v % D he) © A D N Q e

Fed Policy Cycle (Date Range)

[23]: plot_bar_returns_ffr_change(
cycle_df=spy_cycle_df,
asset_label="SPY",
annualized_or_cumulative="Annualized",
index_num="02",

14

SPY Annualized Return by Fed Policy Cyclg With Annualized Change in Fed Funds Rate

AFFR: 0bps/yr 37.4%
40 AFFR: 2bps/yr
30 4
22.0%
- 20.4% : 20.1%
§ AFFR: 2bps/yr AFFR: Ob Sl{‘\ﬁr -129bps/yr
= 201 15.3%
5 AFFR: -1bps/yr
—
1} 8.2%
o 1094 6.6% AFFR: 72bps/yr
- EF R: 19%bps, 2.8%
_g - AFFR: 350bps,
T oy
c
c
N -14.0%
& ~109 AFFR: -313bps/yr
)
—20 A
29.1%
AFFR: -360bps/yr
_30 4
N > N N 3\ N N N) S ©
Q Q Q QD Q) D D D Q
g F & & M
¢ & & O O O S P X
QS O N o 3y Sy 1) 3V 3% v
O I S A L
<@ © Q@ <@ <@ <9 Q@ <@ <© 0 <0
& N N N > > & > >
N N N N Q N < < o N N
Y & & Y N N & N gV & &
W o 4% & \el o 9’ O 94 4] g
& &£ ® & 3> N N &v & Qv Qv
RGN N N R I RN N
Y Y
¢ & & & & & & & & ¢ &
C C C C C C C C o e

Fed Policy Cycle (Date Range)

df spy_cycle_df

B
Don't modify below this line
HARAH AR AR AR AR R BB R RHRRRRRRAAAAAAARA A

Run OLS regression with statsmodels
df ["FFR_AnnualizedChange_bps"]

= df ["AnnualizedReturnPct"]
sm.add_constant (X)

model = sm.0LS(y, X).fit()

print (model . summary())

< X R

print (f"Intercept: {model.params[0]}, Slope: {model.params[1]}")

<and slope

Calc X and Y values for regression line
X_vals = np.linspace(X.min(), X.max(), 100)
Y_vals = model.params[0] + model.params[1] * X_vals

OLS Regression Results

Intercept,

15

[25] :

Dep. Variable: AnnualizedReturnPct R-squared: 0.176
Model: OLS Adj. R-squared: 0.085
Method: Least Squares F-statistic: 1.928
Date: Mon, 26 Jan 2026 Prob (F-statistic): 0.198
Time: 12:06:34 Log-Likelihood: -47.196
No. Observations: 11 AIC: 98.39
Df Residuals: 9 BIC: 99.19
Df Model: 1
Covariance Type: nonrobust

coef std err t P>|t]| [0.025
0.975]
const 12.4815 5.909 2.112 0.064 -0.886
25.849
FFR_AnnualizedChange_bps 0.0424 0.031 1.389 0.198 -0.027
0.112
Omnibus: 1.103 Durbin-Watson: 3.070
Prob(Omnibus) : 0.576 Jarque-Bera (JB): 0.674
Skew: 0.021 Prob(JB): 0.714
Kurtosis: 1.788 Cond. No. 194.
Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly

specified.

Intercept: 12.481508545114949, Slope: 0.04242618089044424

Copy this <!-- INSERT 02_SPY_Annualized_Regression_HERE —--> to index_temp.md
export_track_md_deps (
dep_file=dep_file,
md_filename="02_SPY_Annualized_Regression.md",
content=sm_ols_summary_markdown(result=model,
~file_path="02_SPY_Annualized_Regression.md"),

output_type="text",

Exported and tracked: 02_SPY_Annualized_Regression.md

[26]: plot_scatter_regression_ffr_vs_returns(
cycle_df=spy_cycle_df,
asset_label="SPY",
index_num="02",

x_vals=X_vals,
y_vals=Y_vals,

16

[27]:

intercept=model .params[0],
slope=model.params[1],

)
SPY Annualized Return vs Annualized Change in Fed Funds Rate by Policy Cycle
401 acycle 6 ——- OLSFit: y = 12.5 + 0.04x
oFycle 8 -—- OLSfit: y = 12.5 + 0.04x
30

~ --’—‘_-__.
< 204 aCycle 11 ﬁcclﬁi]?o B
c | e
Z eriedo
2 10 ==
E —‘—_.’__——’ @Cvcles oCycle 1
N ____--"_‘ @Cyeld
T 0t
[=
-
<
> —10+
% @Fycle?

,20_

—304 @Cycle 3

-300 -200 -100 0 100 200 300
Annualized Change In Fed Funds Rate (bps)
1.6.2 Bonds (TLT)

Set decimal places
pandas_set_decimal_places(2)

yf_pull_data(
base_directory=DATA_DIR,
ticker="TLT",
source="Yahoo_Finance",

asset_class="Exchange_Traded_Funds",

excel_export=True,
pickle_export=True,
output_confirmation=True,

)

[*********************100%***********************]

The first and last date of data for TLT is:

Close High

Date

17

Low Open Volume

1 of 1 completed

2002-07-30 36.65 36.82 36.65 36.75 6100

Close High Low O0Open Volume
Date
2026-01-23 87.93 88.03 87.50 87.83 35959500

Yahoo Finance data complete for TLT

[27]: Close High Low Open Volume
Date
2002-07-30 36.65 36.82 36.65 36.75 6100
2002-07-31 37.10 37.22 36.82 36.84 29400
2002-08-01 37.31 37.32 37.11 37.11 25000
2002-08-02 37.70 37.81 37.26 37.39 52800
2002-08-05 37.86 37.96 37.70 37.78 61100

2026-01-16 87.80 88.32 87.71 88.13 46382400
2026-01-20 86.65 87.03 86.54 86.63 66009500
2026-01-21 87.31 87.48 86.62 86.80 51220100
2026-01-22 87.69 87.76 87.14 87.27 42419300
2026-01-23 87.93 88.03 87.50 87.83 35959500

[6910 rows x 5 columns]

[28]: tl1lt = load_data(
base_directory=DATA_DIR,
ticker="TLT",
source="Yahoo_Finance",
asset_class="Exchange_Traded_Funds",
timeframe="Daily",
file_format="pickle",

Filter TLT to date range
tlt = tlt[(tlt.index >= pd.to_datetime(start_date)) & (tlt.index <= pd.
~to_datetime(end_date))]

Resample to monthly frequency
tlt_monthly = tlt.resample("M").last()
tlt_monthly["Monthly_ Return"] = tlt_monthly["Close"].pct_change()

[29]: df_info(tlt_monthly)

The columns, shape, and data types are:

<class 'pandas.core.frame.DataFrame'>

DatetimeIndex: 252 entries, 2004-11-30 to 2025-10-31
Freq: ME

Data columns (total 6 columns):

18

[30]:

Column Non-Null Count Dtype

0 Close 252 non-null float64

1 High 252 non-null float64

2 Low 252 non-null float64

3 0Open 252 non-null float64

4 Volume 252 non-null int64

5 Monthly_Return 251 non-null float64

dtypes: float64(5), int64(1)
memory usage: 13.8 KB
None
The first 5 rows are:

Close High Low Open Volume Monthly_Return
Date
2004-11-30 43.80 43.91 43.64 43.80 1754500 NaN
2004-12-31 44.96 45.01 44.84 44.87 1056400 0.03
2005-01-31 46.57 46.59 46.35 46.37 1313900 0.04
2005-02-28 45.88 46.43 45.82 46.43 2797300 -0.01
2005-03-31 45.67 45.70 45.43 45.61 2410900 -0.00
The last 5 rows are:
Close High Low O0Open Volume Monthly_Return

Date

2025-06-30 86.00 86.18 85.37 85.62 53695200 0.03
2025-07-31 85.02 85.50 84.94 85.22 49814100 -0.01
2025-08-31 85.03 85.28 84.87 85.18 41686400 0.00
2025-09-30 88.08 88.74 87.92 88.37 38584000 0.04
2025-10-31 89.30 89.66 89.21 89.56 38247300 0.01

Copy this <!-- INSERT 03 _TLT Monthly_HERE --> to index_temp.md

export_track_md_deps(
dep_file=dep_file,

md_filename="03_TLT_Monthly.md",
content=df_info_markdown(df=tlt_monthly, decimal_places=2),

output_type="markdown",

Exported and tracked: O3_TLT_Monthly.md

[31]: plot_timeseries(

price_df=tlt,
plot_start_date=start_date,
plot_end_date=end_date,
plot_columns=["Close"],
title="TLT Daily Close Price",
x_label="Date",

x_format="Year",

19

[32]:

[32]:

x_tick_rotation=45,
y_label="Price ($)",
y_format="Decimal",
y_format_decimal_places=0,
y_tick_spacing=10,

grid=True,

legend=False,
export_plot=True,
plot_file_name="03_TLT_Price",

TLT Daily Close Price

1504

1404

130

120 +

= e

o =

(=] o
| |

Price ($)

oo
[=)
L

701

60 +

50 1

40+

tlt_cycle_df = calc_fed_cycle_asset_performance(

fed_cycles=fed_cycles,
cycle_labels=cycle_labels,
fed_changes=fed_changes,
monthly_df=tlt_monthly,

tlt_cycle_df

w N ~=» O

Cycle Start End Months CumulativeReturn \
Cycle 1 2004-11-01 2006-07-01 20 0.04
Cycle 2 2006-07-01 2007-07-01 12 0.06
Cycle 3 2007-07-01 2008-12-01 17 0.32
Cycle 4 2008-12-01 2015-11-01 83 0.46

20

SLOOO\ICDO'I»POO[\)!—*O © 00 N O O

© 0 NO Ok WN K- O

[EY
o

© 0 NO Ok WN - O

[EY
o

Cycle 5 2015-11-01
Cycle 6 2019-01-01
Cycle 7 2019-07-01
Cycle 8 2020-04-01
Cycle 9 2022-02-01
Cycle 10 2023-08-01
Cycle 11 2024-08-01

CumulativeReturnPct AverageMonthlyReturn AverageMonthlyReturnPct \

4.23
5.76
32.42
45.67
7.42
10.48
26.18
-11.33
-26.96
-1.52
0.42

AnnualizedReturn

0.03
0.06
0.22
0.06
0.02
0.22
0.36
.06
.19
.02
0.00

FedFundsChange_bps
331.00
2.00
-510.00
-4.00
228.00
0.00
-235.00
3.00
525.00
0.00
-161.00

2019-01-01
2019-07-01
2020-04-01
2022-02-01
2023-08-01
2024-08-01
2026-01-26

FFR_AnnualizedChange
.02
.00
.04
.00
.01
.00
.03
.00
.03
.00
.01

AnnualizedReturnPct
2.
5.

21.
5.
2.

22.

36.

-6.

-18.

-1.
0.

51
76
92
59
29
05
34
35
90
52
33

21

38
6
9

22

18

12

15

.00
.00
.02
.01
.00
.02
.03
.00
.02
.00
.00

Volatility

0.09

0.07

0.14

0.15

0.10

0.13

0.18

0.11

0.17

0.20

0.11

0.07
0.10
0.26
.11
.27
.02
0.00

0.25
0.49
1.73
0.55
0.23
1.73
2.73
.50
.62
0.02
0.08

FedFundsChange

0.03

0.00
.05
.00
0.02
0.00
.02
0.00
0.05
0.00
.02

FFR_AnnualizedChange_bps

198.60
2.00
-360.00
-0.58
72.00
0.00
-313.33
1.64
350.00
0.00
-128.80

[33]:

[34]:

Label

0 Cycle 1, 2004-11-01 to 2006-07-01
1 Cycle 2, 2006-07-01 to 2007-07-01
2 Cycle 3, 2007-07-01 to 2008-12-01
3 Cycle 4, 2008-12-01 to 2015-11-01
4 Cycle 5, 2015-11-01 to 2019-01-01
5 Cycle 6, 2019-01-01 to 2019-07-01
6 Cycle 7, 2019-07-01 to 2020-04-01
7 Cycle 8, 2020-04-01 to 2022-02-01
8 Cycle 9, 2022-02-01 to 2023-08-01
9 Cycle 10, 2023-08-01 to 2024-08-01

10 Cycle 11, 2024-08-01 to 2026-01-26

Copy this <!-- INSERT 03_TLT Cycle_ DF HERE --> to index_temp.md
export_track_md_deps (
dep_file=dep_file,
md_filename="03_TLT_Cycle_DF.md",
content=tlt_cycle_df.to_markdown(floatfmt=".2f"),
output_type="markdown",

Exported and tracked: 03_TLT_Cycle_DF.md

plot_bar_returns_ffr_change(
cycle_df=tlt_cycle_df,
asset_label="TLT",
annualized_or_cumulative="Cumulative",
index_num="03",

22

TLT Cumulative Return by Fed Policy Cycle With Cumulative Change in Fed Funds Rate

AFFR: -4bps

40 1
32.4%
AFFR: -510bps

1 26.2%
30 AFFR: -235bps

20 1

10.5%
7.4% AFFR: Obps
109 459 AFF—"P-\‘??WS AFFR: 228bps

AFFR: 331bps, 0.4%
1.5%AFFR: -161bps
ARER:0bps ———

TLT Cumulative Return (%)

0 4
-11.3%
-10 AFFR: 3bps
— 2 O 4
27.0%
AFFR: 525bps
=30+ — . . . :
. o . . & & & 5 . & ©
& & ~¥ ~Y N & o N & & N
g & F ¥ ¥ P oY @ F &
D 0N > > P > » Ol > ~ ~
@ © © < 0 0 Q0 o <0 <9
& & & & & N & & & 5 5
ISR I A SR ST AT A & .S
~ &y @ ~ Y o N o &V & &
& & & F ¢ ¢ ¢
v v v v v v v v v Vv Vv
N A w9 o A o RN

Fed Policy Cycle (Date Range)

[35]: plot_bar_returns_ffr_change(
cycle_df=tlt_cycle_df,
asset_label="TLT",
annualized_or_cumulative="Annualized",
index_num="03",

23

TLT Annualized Return by Fed Policy Cycle With;Apnualized Change in Fed Funds Rate

AFFR: -313bps/yr
30 A
21.9% 22.1%
e AFFR: -360bps/yr AFFR: Obpsfyr
=
c 20 A
3
2
7]
o
T 109 5.8% 5.6%
N 2.5% AFFR: 2bps/yr AFFR: -1bp5.fyr2 3%
—_— . - o
S R 199bps- AFFR: 72bpsjyr 0.3%
-1.5%FFR: -129bpk/yr
I o SRl yT——
< 6.4%
'J AFFR: 2bps/yr
'_
-10
-18.9%
AFFR: 350bps/yr
_20 4
N & N S N Q¥ N & N N ,.p
N A v " e A s v & Gl &
S N I > N S N N S S S
F & & & S g g
I S U L G U L
<© <0 © © © © 0 0 © © O
< & S & & & &
N N S S S S N S S S
PO N S ~ ~ & & o N &
» © N & < o o oS . o
& Y & & N N N v N gv gV
v v 0% v v v v Vv v v Vv
a\ a’\' a”) N e"bl a") e"o . a’\ a‘b N (bq S "3
> > & % & & o % > & g

Fed Policy Cycle (Date Range)

[36]: df = tlt_cycle_df

HARAAAA R AR AR R BB RRRRRRRRRRAAAAAA A
Don't modify below this line
HARAAAAAAAR BB AR BB R RRRRRRRRRAAAAAAA A

Run OLS regression with statsmodels

= df ["FFR_AnnualizedChange_bps"]

df ["AnnualizedReturnPct"]

sm.add_constant (X)

model = sm.0LS(y, X).fit()

print (model.summary())

print (f"Intercept: {model.params[0]}, Slope: {model.params[1]}") # Intercept,
~and slope

< X o

Calc X and Y values for regression line
X_vals = np.linspace(X.min(), X.max(), 100)
Y_vals = model.params[0] + model.params[1] * X_vals

OLS Regression Results

24

[37]:

Dep. Variable: AnnualizedReturnPct R-squared: 0.615
Model: OLS Adj. R-squared: 0.573
Method: Least Squares F-statistic: 14.39
Date: Mon, 26 Jan 2026 Prob (F-statistic): 0.00426
Time: 12:06:37 Log-Likelihood: -39.782
No. Observations: 11 AIC: 83.56
Df Residuals: 9 BIC: 84.36
Df Model: 1
Covariance Type: nonrobust

coef std err t P>t [0.025
0.975]
const 5.4077 3.012 1.796 0.106 -1.405
12.221
FFR_AnnualizedChange_bps -0.0591 0.016 -3.794 0.004 -0.094
-0.024
Omnibus: 0.635 Durbin-Watson: 1.199
Prob(Omnibus) : 0.728 Jarque-Bera (JB): 0.621
Skew: 0.387 Prob(JB): 0.733
Kurtosis: 2.131 Cond. No. 194.
Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly

specified.

Intercept: 5.407713843801814, Slope: -0.059076861433875985

Copy this <!-- INSERT 03_TLT Annualized_Regression_HERE —--> to index_temp.md
export_track_md_deps (
dep_file=dep_file,
md_filename="03_TLT_Annualized_Regression.md",
content=sm_ols_summary_markdown(result=model,
~file_path="03_TLT_Annualized_Regression.md"),

output_type="text",

Exported and tracked: O3_TLT_Annualized_Regression.md

[38]: plot_scatter_regression_ffr_vs_returns(
cycle_df=tlt_cycle_df,
asset_label="TLT",

index_num="03",
x_vals=X_vals,
y_vals=Y_vals,

25

intercept=model .params[0],
slope=model.params[1],

)
TLT Annualized Return vs Annualized Change in Fed Funds Rate by Policy Cycle
.Cycle 7 ——- OLSFit: y = 5.4 + -0.06x
=== OLSFit: y = 5.4 + -0.06x
301
}-E .Cyclehia\"‘u_‘h @cycle 6
c 20 -]
2 T
Q Tl
e« e
T 101 “‘*~_
N - gfdes
1] s
3 “~._@Cycles ycle 1
E 0 alycle 11 ‘,-(i o«
b ,Cycle 10 e
E ‘:'Cycle 8 ‘R“*-.,_‘
~10 T
204 .Cyc\(
-300 -200 -100 0 100 200 300

Annualized Change In Fed Funds Rate (bps)

1.6.3 Gold (GLD)

[39]: # Set decimal places
pandas_set_decimal_places(2)

yf_pull_data(
base_directory=DATA_DIR,
ticker="GLD",
source="Yahoo_Finance",
asset_class="Exchange_Traded_Funds",
excel_export=True,
pickle_export=True,
output_confirmation=True,

[okokakokokokoko ko skokokok ok kokokokok 1 00k kokkokkokkok ok ok ok ok kokkokkk] 1 of 1 completed

The first and last date of data for GLD is:

Close High Low Open Volume
Date

26

2004-11-18 44.38 44.49 44.07 44.43 5992000

Close High Low Open Volume
Date
2026-01-23 458.00 458.75 453.45 454.11 21497000

Yahoo Finance data complete for GLD

[39]: Close High Low Open Volume
Date
2004-11-18 44.38 44.49 44.07 44.43 5992000
2004-11-19 44.78 44.92 44.47 44.49 11655300
2004-11-22 44.95 44.97 44.74 44.75 11996000
2004-11-23 44.75 44.92 44.72 44.88 3169200
2004-11-24 45.05 45.05 44.79 44.93 6105100

2026-01-16 421.29 424.80 417.04 422.80 20951600
2026-01-20 437.23 438.14 434.10 436.69 21308100
2026-01-21 443.60 448.00 437.11 446.87 38830200
2026-01-22 451.79 452.98 443.56 443.84 19251200
2026-01-23 458.00 458.75 453.45 454.11 21497000

[6328 rows x 5 columns]

[40]: gld = load_data(
base_directory=DATA_DIR,
ticker="GLD",
source="Yahoo_Finance",
asset_class="Exchange_Traded_Funds",
timeframe="Daily",
file_format="pickle",

Filter GLD to date range
gld = gld[(gld.index >= pd.to_datetime(start_date)) & (gld.index <= pd.
~to_datetime(end date))]

Resample to monthly frequency
gld_monthly = gld.resample("M").last()
gld_monthly["Monthly_ Return"] = gld_monthly["Close"].pct_change()

[41]: df_info(gld_monthly)

The columns, shape, and data types are:

<class 'pandas.core.frame.DataFrame'>

DatetimeIndex: 252 entries, 2004-11-30 to 2025-10-31
Freq: ME

Data columns (total 6 columns):

27

Column Non-Null Count Dtype

0 Close 252 non-null float64
1 High 252 non-null float64
2 Low 252 non-null float64
3 0Open 252 non-null float64
4 Volume 252 non-null int64

5 Monthly_Return 251 non-null float64
dtypes: float64(5), int64(1)
memory usage: 13.8 KB
None
The first 5 rows are:

Close High Low Open Volume Monthly_Return

Date

2004-11-30 45.12 45.41 44.82 45.37 3857200 NaN
2004-12-31 43.80 43.94 43.73 43.85 531600 -0.03
2005-01-31 42.22 42.30 41.96 42.21 1692400 -0.04
2005-02-28 43.53 43.74 43.52 43.68 755300 0.03
2005-03-31 42.82 42.87 42.70 42.87 1363200 -0.02

The last 5 rows are:

Close High Low Open Volume Monthly_Return

Date

2025-06-30 304.83 304.92 301.95 302.39 8192100 0.00
2025-07-31 302.96 304.61 302.86 304.59 8981000 -0.01
2025-08-31 318.07 318.09 314.64 314.72 15642600 0.05
2025-09-30 355.47 355.57 350.87 351.13 13312400 0.12
2025-10-31 368.12 370.66 365.50 370.47 11077900 0.04

[42]: # Copy thtis <!-- INSERT 04_GLD_Monthly HERE --> to index_temp.md
export_track_md_deps(
dep_file=dep_file,
md_filename="04_GLD_Monthly.md",
content=df_info_markdown(df=gld_monthly, decimal_places=2),
output_type="markdown",

Exported and tracked: 04_GLD_Monthly.md

[43]: plot_timeseries(
price_df=gld,
plot_start_date=start_date,
plot_end_date=end_date,
plot_columns=["Close"],
title="GLD Daily Close Price",
x_label="Date",
x_format="Year",

28

x_tick_rotation=45,
y_label="Price ($)",
y_format="Decimal",
y_format_decimal_places=0,
y_tick_spacing=25,

grid=True,

legend=False,
export_plot=True,
plot_file_name="04_GLD_Price",

GLD Daily Close Price

Price ($)
N

[44]: gld_cycle_df = calc_fed_cycle_asset_performance (
fed_cycles=fed_cycles,
cycle_labels=cycle_labels,
fed_changes=fed_changes,
monthly_df=gld_monthly,

gld_cycle_df

[44] : Cycle Start End Months CumulativeReturn \
0 Cycle 1 2004-11-01 2006-07-01 20 0.36
1 Cycle 2 2006-07-01 2007-07-01 12 0.05
2 Cycle 3 2007-07-01 2008-12-01 17 0.25
3 Cycle 4 2008-12-01 2015-11-01 83 0.36

29

4
5
6
7
8
9

10

© 00 NO Ok WN - O

[EY
o

© 0 NO Ok WN K+~ O

[EY
o

© 0 NO Ok WN - O

[E
o

Cycle
Cycle
Cycle
Cycle
Cycle
Cycle 10
Cycle 11

© 00 N O O

CumulativeReturnPct AverageMonthlyReturn AverageMonthlyReturnPct \
0.

AnnualizedReturn

2015-11-01
2019-01-01
2019-07-01
2020-04-01
2022-02-01
2023-08-01
2024-08-01

35.70

4.96
24.96
36.10
10.93

9.86
11.15
13.54

8.48
24.24
62.49

0.20
.05
17
.05
.03
.21
.15
.07
.06
.24
L47

O O O O O O O O O O

FedFundsChange_bps

331.00
2.00
-510.00
-4.00
228.00
0.00
-235.00
3.00
525.00
0.00
-161.00

2019-01-01
2019-07-01
2020-04-01
2022-02-01
2023-08-01
2024-08-01
2026-01-26

AnnualizedReturnPct
20.
4.
17.
4.
3.
20.
15.
7.
5.
24.
47 .

10
96
03
56
33
68
13
17
58
24
46

O O O O O O O O oo

38
6
9

22

18

12

15

02
.00
.02
.01
.00
.02
.01
.01
.01
.02
.03

O O O O O O o

11
.10
11
.14
.08
.24
.62

1.

WL OOk, =, OO Oo

73
.45
.59
.51
.35
.63
.24
.69
.53
.89
.36

Volatility FedFundsChange

FFR_AnnualizedChange

.02
.00
.04
.00
.01
.00
.03
.00
.03
.00
.01

30

0.
.11
.26
.18
.14
.12
.13
.16
.14
.13
.14

O O O O O O O O O o

17

350.

-128.

.03
.00
.05
.00
.02
.00
.02
.00
.05
.00
.02

FFR_AnnualizedChange_bps
198.
2.
-360.
-0.
72.
0.
-313.

60
00
00
58
00
00
33
.64
00
.00
80

[45] :

[46] :

Label

0 Cycle 1, 2004-11-01 to 2006-07-01
1 Cycle 2, 2006-07-01 to 2007-07-01
2 Cycle 3, 2007-07-01 to 2008-12-01
3 Cycle 4, 2008-12-01 to 2015-11-01
4 Cycle 5, 2015-11-01 to 2019-01-01
5 Cycle 6, 2019-01-01 to 2019-07-01
6 Cycle 7, 2019-07-01 to 2020-04-01
7 Cycle 8, 2020-04-01 to 2022-02-01
8 Cycle 9, 2022-02-01 to 2023-08-01
9 Cycle 10, 2023-08-01 to 2024-08-01

10 Cycle 11, 2024-08-01 to 2026-01-26

Copy this <!-- INSERT 04_GLD_Cycle_DF HERE --> to index_temp.md
export_track_md_deps (
dep_file=dep_file,
md_filename="04_GLD_Cycle_DF.md",
content=gld_cycle_df.to_markdown(floatfmt=".2f"),
output_type="markdown",

Exported and tracked: 04_GLD_Cycle_DF.md

plot_bar_returns_ffr_change(
cycle_df=gld_cycle_df,
asset_label="GLD",
annualized_or_cumulative="Cumulative",
index_num="04",

31

GLD Cumulative Return by Fed Policy Cycle With Cumulative Change in Fed fFunds Rate

AFFR: -161bps

60_

(5]
(=]
L

35.7% 36.1%
FR: 331bps AFFR: -4bps

B
=i

V%)
o
L

25.0% 24.2%
AFFR: -510bps AFFR: Obps

)
o
L

13.5%

GLD Cumulative Return (%)

10.9% 11.1% AFFR: 3bps
AFFR: 22abE§F9R'?3“b%§FR: -235bps 8.5%
101 5.0% AFFR: 525bp:
AFFR: 2bps
0- T T T T . T T
9'\: NN 9’\- IQ'\ 9’\ 9\ S ,Q\' ,6\' ’6\- 9:0
& 3 N AR YA Nl A~ A
& & 9 & o S P X e
§F & F & & ¥ &F ¢ ¢ & &
% Vv v v v v Vv Vv v v Vv
<® © <0 < <9 S © © <@ © 9
o S o g ¥ N S N > S e
SR AU NN 8 IS S\ & &
g & & F & ¥ g & g ¢
N"P '\vq? ""J‘ﬂP D-rLQ ‘):-\9 (0:-\9 ’\:‘P %’\9 %:\9 Qﬁ'p "
e e & 2 & e e & & @ @
%) ®) &) ®) G G %) ®) &) o ¥

Fed Policy Cycle (Date Range)

[47]: plot_bar_returns_ffr_change(
cycle_df=gld_cycle_df,
asset_label="GLD",
annualized_or_cumulative="Annualized",
index_num="04",

32

[48] :

GLD Annualized Return by Fed Policy Cycle With Annualized Change in Fed,Funds Rate

=
o
|

1)
o

20.7%

5
20.1% AFFR: Obpsfyr

AFKR: 19%bps/yr
20 | 17.0%

AFFR: -360bps/yr

15.1%
AFFR: -313bps/yr

GLD Annualized Return (%)

7.2%
AFFR: 2bps/yr 5.6%
AFFR: 350bps

=
o
L

5.0% 4.6%
FFR: 2bps/yr AFFR: -1bpsl¥r3-3%
AFFR: 72bps/yr

o
¥
Fed Policy Cycle (Date Range)

df = gld_cycle_df

HARAAA AR AR AR R RRRRRRRRRRRRAAAAAA A
Don't modify below this line
HARAHARA AR AR BB BB RRRRRRRRRRRAAAAA A

Run OLS regression with statsmodels

df ["FFR_AnnualizedChange_bps"]

df ["AnnualizedReturnPct"]

sm.add_constant (X)

sm.0LS(y, X).fit(Q)

print (model . summary())

print (f"Intercept: {model.params[0]}, Slope: {model.params[1]}")
~and slope

Ea I I <N
n

model =

Calc X and Y values for regression line
X_vals = np.linspace(X.min(), X.max(), 100)
Y_vals = model.params[0] + model.params[1] * X_vals

OLS Regression Results

AFFR: -129bpgfyr

Intercept,

33

[49] :

[60]: plot_scatter_regression_ffr_vs_returns(

Dep. Variable: AnnualizedReturnPct R-squared: 0.093
Model: OLS Adj. R-squared: -0.008
Method: Least Squares F-statistic: 0.9214
Date: Mon, 26 Jan 2026 Prob (F-statistic): 0.362
Time: 12:06:40 Log-Likelihood: -42.778
No. Observations: 11 AIC: 89.56
Df Residuals: 9 BIC: 90.35
Df Model: 1
Covariance Type: nonrobust

coef std err t P>|t]| [0.025
0.975]
const 15.1586 3.955 3.833 0.004 6.213
24.104
FFR_AnnualizedChange_bps -0.0196 0.020 -0.960 0.362 -0.066
0.027
Omnibus: 7.682 Durbin-Watson: 0.913
Prob(Omnibus) : 0.021 Jarque-Bera (JB): 3.504
Skew: 1.305 Prob(JB): 0.173
Kurtosis: 3.912 Cond. No. 194.
Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly

specified.

Intercept: 15.158628269088016, Slope: -0.019626313878624208

Copy this <!-- INSERT 04_GLD_Annualized_Regression_HERE —--> to index_temp.md
export_track_md_deps (
dep_file=dep_file,
md_filename="04_GLD_Annualized_Regression.md",
content=sm_ols_summary_markdown(result=model,
~file_path="04_GLD_Annualized_Regression.md"),

output_type="text",

Exported and tracked: 04_GLD_Annualized_Regression.md

cycle_df=gld_cycle_df,
asset_label="GLD",
index_num="04",

x_vals=X_vals,
y_vals=Y_vals,

34

[51]:

[51]:

[52] :

[52]:

intercept=model .params[0],
slope=model.params[1],

40 1

304

20 1

GLD Annualized Return (%)

GLD Annualized Return vs Annualized Change in Fed Funds Rate by Policy Cycle

.Cycle 11 —-—- OLS Fitt y = 15.2 + -0.02x
=== OLSFit: y = 15.2 + -0.02x
?Cycle 10
______________ CIBCYC'e 6 aCycle 1
.Cycle 3| Tt
.Cyc\e L e
ocycles T
W@@ .Cycl(:
.Cycle 5
-300 -200 -100 0 100 200 300

1.7 Hybrid Portfolio
1.7.1 Asset Allocation

fed_cycles

[('2004-11-
('2006-07-
('2007-07-
('2008-12-
('2015-11-
('2019-01-
('2019-07-
('2020-04-
('2022-02-
('2023-08-
('2024-08-

Annualized Change In Fed Funds Rate (bps)

01', '2006-07-01'),
01', '2007-07-01'),
01', '2008-12-01'),
01', '2015-11-01'),
01', '2019-01-01'),
01', '2019-07-01'),
01', '2020-04-01'),
01', '2022-02-01'),
01', '2023-08-01'),
01', '2024-08-01'),
01', '2026-01-26")]

cycle_labels

['Cycle 1',
'Cycle 2',

35

'Cycle 3',
'Cycle 4',
'Cycle &',
'Cycle 6',
'Cycle 7',
'Cycle 8',
'Cycle 9',
'Cycle 10',
'Cycle 11']

[63]: # Calculate cumulative returns and drawdown for SPY

spy_monthly['Cumulative_Return'] = (1 + spy_monthly['Monthly_Return'l]).
wcumprod() - 1

spy_monthly['Cumulative_Return_Plus_One'] = 1 + spy_monthly['Cumulative_Return']

spy_monthly['Rolling Max'] = spy_monthly['Cumulative_Return_Plus_One'] .cummax()

spy_monthly['Drawdown'] = spy_monthly['Cumulative_Return_Plus_One'] /.
~spy_monthly['Rolling Max'] - 1

spy_monthly.drop(columns=['Cumulative_Return_Plus_One', 'Rolling Max'],
~inplace=True)

Calculate cumulative returns and drawdown for TLT

tlt_monthly['Cumulative_Return'] = (1 + tlt_monthly['Monthly_Return']).
wcumprod() - 1

tlt_monthly['Cumulative_Return_Plus_One'] = 1 + tlt_monthly['Cumulative_Return']

tlt_monthly['Rolling Max'] = tlt_monthly['Cumulative_Return_Plus_One'].cummax()

tlt_monthly['Drawdown'] = tlt_monthly['Cumulative_Return_Plus_One'] /,
~tlt_monthly['Rolling Max'] - 1

tlt_monthly.drop(columns=['Cumulative_Return_Plus_One', 'Rolling Max'l],
~inplace=True)

Isolate the returns for SPY and TLT
spy_ret = spy_monthly['Monthly_Return']
tlt_ret = tlt_monthly['Monthly_Return']

Create a blended portfolio based on Fed policy cycles
portfolio = (
spy_ret[spy_ret.index <= "2007-07-01"]
.combine_first(tlt_ret[(tlt_ret.index >= "2007-07-01") & (tlt_ret.index <=
+"2008-12-01")1)
.combine_first(spy_ret[(spy_ret.index > "2008-12-01") & (spy_ret.index <=
+"2019-07-01")1)
.combine_first(tlt_ret[(tlt_ret.index >= "2019-07-01") & (tlt_ret.index <=,
+"2020-04-01")1)
.combine_first(spy_ret[(spy_ret.index > "2020-04-01") & (spy_ret.index <=
+"2024-08-01")1)
.combine_first(tlt_ret[tlt_ret.index > "2024-08-01"])

36

Convert to DataFrame
portfolio_monthly = portfolio.to_frame(name="Portfolio_Monthly_Return")

Calculate cumulative returns and drawdown for the portfolio

portfolio_monthly['Portfolio_Cumulative_Return'] = (1 +,
wportfolio_monthly['Portfolio_Monthly_ Return']).cumprod() - 1

portfolio_monthly['Portfolio_Cumulative_Return_Plus_One'] = 1 +,
wportfolio_monthly['Portfolio_Cumulative_Return']

portfolio_monthly['Portfolio_Rolling Max'] =,
wportfolio_monthly['Portfolio_Cumulative_Return_Plus_One'] .cummax ()

portfolio_monthly['Portfolio_Drawdown'] =
wportfolio_monthly['Portfolio_Cumulative_Return_Plus_One'] /.
wportfolio_monthly['Portfolio_Rolling Max'] - 1

portfolio_monthly.drop(columns=['Portfolio_Cumulative_Return_Plus_One',,
o'Portfolio_Rolling Max'], inplace=True)

Merge "spy_monthly" and "tlt_monthly" into "portfolio_monthly" to compare,
wcumulative returns
portfolio_monthly = portfolio_monthly.join(
spy_monthly['Monthly_Return'].rename('SPY_Monthly Return'),

how="'left'
) . join(
spy_monthly['Cumulative_Return'] .rename('SPY_Cumulative_Return'),
how="'left'
). join(
spy_monthly['Drawdown'] .rename ('SPY_Drawdown'),
how="'left'
) . join(
tlt_monthly['Monthly_Return'].rename('TLT_Monthly_ Return'),
how="'left'
) .join(
tlt_monthly['Cumulative_Return'] .rename('TLT_Cumulative_Return'),
how="'left'
) .join(
tlt_monthly['Drawdown'] .rename('TLT_Drawdown'),
how="'left'

[54]: df_info(portfolio_monthly)

The columns, shape, and data types are:

<class 'pandas.core.frame.DataFrame'>

DatetimeIndex: 252 entries, 2004-11-30 to 2025-10-31
Freq: ME

Data columns (total 9 columns):

37

Column

~N O Ok W NN e O

8 TLT_Drawdown

Non-Null Count

Portfolio_Monthly_Return 251
Portfolio_Cumulative_Return 251
Portfolio_Drawdown 251
SPY_Monthly_Return 251
SPY_Cumulative_Return 251
SPY_Drawdown 251
TLT_Monthly_Return 251
TLT_Cumulative_Return 251

2561

dtypes: float64(9)

memory usage:

None

19.7 KB

The first 5 rows are:

Date

2004-11-30
2004-12-31
2005-01-31
2005-02-28
2005-03-31

Date

2004-11-30
2004-12-31
2005-01-31
2005-02-28
2005-03-31

Date

2004-11-30
2004-12-31
2005-01-31
2005-02-28
2005-03-31

Date

2004-11-30
2004-12-31
2005-01-31
2005-02-28
2005-03-31

Portfolio_Monthly_Return

NaN
0.03
-0.02
0.02
-0.02

Portfolio_Drawdown SPY_Monthly Return SPY_Cumulative_Return \

NaN
0.00
-0.02
-0.00
-0.02

non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null

Portfolio Cumulative Return \

NaN
0.03
-0.02
0.02
-0.02

float64
float64
float64
float64
float64
float64
float64
float64
float64

NaN
0.03
0.01
0.03
0.01

SPY_Drawdown TLT_Monthly_Return TLT_Cumulative_Return

NaN
0.00
-0.02
-0.00
-0.02

TLT_Drawdown

NaN
0.00
0.00

-0.01
-0.02

The last 5 rows are:

NaN
0.03
0.04

-0.01
-0.00

38

NaN
0.03
0.06
0.05
0.04

NaN
0.03
0.01
0.03
0.01

Portfolio_Monthly_Return Portfolio_Cumulative_Return \

Date

2025-06-30 0.03 19.00

2025-07-31 -0.01 18.78

2025-08-31 0.00 18.78

2025-09-30 0.04 19.49

2025-10-31 0.01 19.77
Portfolio_Drawdown SPY_Monthly Return SPY_Cumulative_Return \

Date

2025-06-30 -0.07 0.05 6.72

2025-07-31 -0.08 0.02 6.90

2025-08-31 -0.08 0.02 7.06

2025-09-30 -0.05 0.04 7.34

2025-10-31 -0.04 0.02 7.54
SPY Drawdown TLT_Monthly_ Return TLT_Cumulative_Return \

Date

2025-06-30 0.00 0.03 0.96

2025-07-31 0.00 -0.01 0.94

2025-08-31 0.00 0.00 0.94

2025-09-30 0.00 0.04 1.01

2025-10-31 0.00 0.01 1.04
TLT_Drawdown

Date

2025-06-30 -0.41

2025-07-31 -0.41

2025-08-31 -0.41

2025-09-30 -0.39

2025-10-31 -0.39

[65]: # Copy this <!-— INSERT 05_Portfolio_DF_HERE --> to indez_temp.md
export_track_md_deps(
dep_file=dep_file,
md_filename="05_Portfolio_DF.md",
content=df_info_markdown(df=portfolio_monthly, decimal_places=3),
output_type="markdown",

Exported and tracked: 05_Portfolio_DF.md

1.7.2 Performance Statistics

[66]: plot_timeseries(
price_df=portfolio_monthly,
plot_start_date=start_date,
plot_end_date=end_date,

39

plot_columns=["Portfolio_Monthly_Return", "SPY_Monthly_Return",
<"TLT_Monthly_Return"],

title="Portfolio, SPY, and TLT Monthly Returns",

x_label="Date",

x_format="Year",

x_tick_rotation=45,

y_label="Return",

y_format="Decimal",

y_format_decimal_places=2,

y_tick_spacing=0.02,

grid=True,

legend=True,

export_plot=True,

plot_file_name="05_Monthly_Returns",

Portfolio, SPY, and TLT Monthly Returns

—— Fortfolio_Monthly_Return
—— SPY_Monthly_Return
—— TLT_Menthly_Return

0.14
0.12 4 ‘
0.10 4
0.08
0.06 1

ol H' e

-0.02
-0.041
-0.06 1
-0.08
-0.10
0.12
-0.14
-0.16

Return

-0.18 \ T T T T \ T T T \ T T T \ T T T T \ T T T

[67]: plot_timeseries(
price_df=portfolio_monthly,
plot_start_date=start_date,
plot_end_date=end_date,
plot_columns=["Portfolio_Cumulative_Return", "SPY_Cumulative_Return",
o"TLT_Cumulative Return"],
title="Portfolio, SPY, and TLT Cumulative Returns",
x_label="Date",
x_format="Year",

40

x_tick_rotation=45,

y_label="Cumulative Return",
y_format="Decimal",
y_format_decimal_places=0,
y_tick_spacing=2,

grid=True,

legend=True,

export_plot=True,
plot_file_name="05_Cumulative_Returns",

Portfolio, SPY, and TLT Cumulative Returns

— Portfolio_Cumulative_Return
204 — SPY_Cumulative_Retumn
—— TLT_Cumulative_Return

Cumulative Return

[68]: plot_timeseries(
price_df=portfolio_monthly,
plot_start_date=start_date,
plot_end_date=end_date,
plot_columns=["Portfolio_Drawdown", "SPY_Drawdown", "TLT_Drawdown"],
title="Portfolio, SPY, and TLT Drawdowns",
x_label="Date",
x_format="Year",
x_tick_rotation=45,
y_label="Drawdown",
y_format="Decimal",
y_format_decimal_places=2,
y_tick_spacing=0.05,
grid=True,

41

legend=True,
export_plot=True,
plot_file_name="05_Drawdowns",

Portfolio, SPY, and TLT Drawdowns

-0.20

-0.25 A

T AT

Drawdown

-0.30

-0.35

-0.40

-0.45 A

—— Portfolie_Drawdown
—— SPY_Drawdown

0507 TLT_Drawdown

> H o A B9 O
WIS A

» H o N PO O AaAD
R N T N N P i NN
DA AT A AR

Date

[59]: port_sum_stats = summary_stats(
fund_list=["Portfolio", "SPY", "TLT"],
df=portfolio_monthly[["Portfolio_Monthly_Return"]],
period="Monthly",
use_calendar_days=False,
excel_export=False,
pickle_export=False,
output_confirmation=False,

Spy_sum_stats = summary_stats(
fund_list=["Portfolio", "SPY", "TLT"],
df=portfolio_monthly[["SPY_Monthly_Return"]],
period="Monthly",
use_calendar_days=False,
excel_export=False,
pickle_export=False,
output_confirmation=False,

42

tlt_sum_stats = summary_stats(
fund_list=["Portfolio", "SPY", "TLT"],
df=portfolio_monthly[["TLT_Monthly_Return"]l],
period="Monthly",
use_calendar_days=False,
excel_export=False,
pickle_export=False,
output_confirmation=False,

sum_stats = port_sum_stats.combine_first(spy_sum_stats) .
<combine first(tlt_sum_stats)

[60]: | # Copy this <!-- INSERT 05_Portfolio_Stats_DF HERE --> to index_temp.md
export_track_md_deps (
dep_file=dep_file,
md_filename="05_Portfolio_Stats_DF.md",
content=sum_stats.to_markdown(floatfmt=".3f"),
output_type="markdown",

Exported and tracked: 05_Portfolio_Stats_DF.md

[]1:

43

	Performance Of Various Asset Classes During Fed Policy Cycles
	Python Imports
	Add Directories To Path
	Track Index Dependencies
	Python Functions
	Data Overview
	Acquire & Plot Fed Funds Data
	Define Fed Policy Cycles

	Return Performance By Fed Policy Cycle
	Stocks (SPY)
	Bonds (TLT)
	Gold (GLD)

	Hybrid Portfolio
	Asset Allocation
	Performance Statistics

