
asset-class-performance-fed-policy-cycles

January 26, 2026

1 Performance Of Various Asset Classes During Fed Policy Cycles
1.1 Python Imports

[1]: # Standard Library
import datetime
import io
import os
import random
import sys
import warnings

from datetime import datetime, timedelta
from pathlib import Path

Data Handling
import numpy as np
import pandas as pd

Data Visualization
import matplotlib.dates as mdates
import matplotlib.pyplot as plt
import matplotlib.ticker as mtick
import seaborn as sns
from matplotlib.ticker import FormatStrFormatter, FuncFormatter, MultipleLocator

Data Sources
import yfinance as yf
import pandas_datareader.data as web

Statistical Analysis
import statsmodels.api as sm

Machine Learning
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler

Suppress warnings

1

warnings.filterwarnings("ignore")

1.2 Add Directories To Path
[2]: # Add the source subdirectory to the system path to allow import config from␣

↪settings.py
current_directory = Path(os.getcwd())
website_base_directory = current_directory.parent.parent.parent
src_directory = website_base_directory / "src"
sys.path.append(str(src_directory)) if str(src_directory) not in sys.path else␣

↪None

Import settings.py
from settings import config

Add configured directories from config to path
SOURCE_DIR = config("SOURCE_DIR")
sys.path.append(str(Path(SOURCE_DIR))) if str(Path(SOURCE_DIR)) not in sys.path␣

↪else None

Add other configured directories
BASE_DIR = config("BASE_DIR")
CONTENT_DIR = config("CONTENT_DIR")
POSTS_DIR = config("POSTS_DIR")
PAGES_DIR = config("PAGES_DIR")
PUBLIC_DIR = config("PUBLIC_DIR")
SOURCE_DIR = config("SOURCE_DIR")
DATA_DIR = config("DATA_DIR")
DATA_MANUAL_DIR = config("DATA_MANUAL_DIR")

Print system path
for i, path in enumerate(sys.path):

print(f"{i}: {path}")

0: /usr/lib/python313.zip
1: /usr/lib/python3.13
2: /usr/lib/python3.13/lib-dynload
3:
4: /home/jared/python-virtual-envs/general-venv-p313/lib/python3.13/site-
packages
5: /home/jared/python-virtual-envs/general-venv-p313/lib/python3.13/site-
packages/setuptools/_vendor
6:
/home/jared/Cloud_Storage/Dropbox/Websites/jaredszajkowski.github.io_congo/src

2

1.3 Track Index Dependencies

[3]: # Create file to track markdown dependencies
dep_file = Path("index_dep.txt")
dep_file.write_text("")

[3]: 0

1.4 Python Functions

[4]: from calc_fed_cycle_asset_performance import calc_fed_cycle_asset_performance
from df_info import df_info
from df_info_markdown import df_info_markdown
from export_track_md_deps import export_track_md_deps
from load_data import load_data
from pandas_set_decimal_places import pandas_set_decimal_places
from plot_bar_returns_ffr_change import plot_bar_returns_ffr_change
from plot_timeseries import plot_timeseries
from plot_scatter_regression_ffr_vs_returns import␣

↪plot_scatter_regression_ffr_vs_returns
from sm_ols_summary_markdown import sm_ols_summary_markdown
from summary_stats import summary_stats
from yf_pull_data import yf_pull_data

1.5 Data Overview
[5]: # Set timeframe

start_date = "2004-11-30" # GLD inception (month end)
end_date = "2025-10-31"

1.5.1 Acquire & Plot Fed Funds Data

[6]: # Set decimal places
pandas_set_decimal_places(4)

Pull Effective Fed Funds Rate from FRED
fedfunds = web.DataReader("FEDFUNDS", "fred", start="1900-01-01", end=datetime.

↪today())
fedfunds["FEDFUNDS"] = fedfunds["FEDFUNDS"] / 100 # Convert to decimal

Resample to monthly frequency and compute change in rate
fedfunds_monthly = fedfunds.resample("M").last()
fedfunds_monthly = fedfunds_monthly[(fedfunds_monthly.index >= pd.

↪to_datetime(start_date)) & (fedfunds_monthly.index <= pd.
↪to_datetime(end_date))]

fedfunds_monthly["FedFunds_Change"] = fedfunds_monthly["FEDFUNDS"].diff()

3

[7]: df_info(fedfunds_monthly)

The columns, shape, and data types are:
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 252 entries, 2004-11-30 to 2025-10-31
Freq: ME
Data columns (total 2 columns):
Column Non-Null Count Dtype
--- ------ -------------- -----
0 FEDFUNDS 252 non-null float64
1 FedFunds_Change 251 non-null float64
dtypes: float64(2)
memory usage: 5.9 KB
None
The first 5 rows are:

FEDFUNDS FedFunds_Change
DATE
2004-11-30 0.0193 NaN
2004-12-31 0.0216 0.0023
2005-01-31 0.0228 0.0012
2005-02-28 0.0250 0.0022
2005-03-31 0.0263 0.0013

The last 5 rows are:

FEDFUNDS FedFunds_Change
DATE
2025-06-30 0.0433 0.0000
2025-07-31 0.0433 0.0000
2025-08-31 0.0433 0.0000
2025-09-30 0.0422 -0.0011
2025-10-31 0.0409 -0.0013

[8]: # Copy this <!-- INSERT_01_Fed_Funds_Monthly_Rate_Change_HERE --> to index_temp.
↪md

export_track_md_deps(
dep_file=dep_file,
md_filename="01_Fed_Funds_Monthly_Rate_Change.md",
content=df_info_markdown(df=fedfunds_monthly, decimal_places=4),
output_type="markdown",

)

� Exported and tracked: 01_Fed_Funds_Monthly_Rate_Change.md

[9]: plot_timeseries(
price_df=fedfunds_monthly,
plot_start_date=start_date,
plot_end_date=end_date,

4

plot_columns=["FEDFUNDS"],
title="Fed Funds Rate",
x_label="Date",
x_format="Year",
x_tick_rotation=45,
y_label="Rate (%)",
y_format="Percentage",
y_format_decimal_places=1,
y_tick_spacing=0.005,
grid=True,
legend=False,
export_plot=True,
plot_file_name="01_Fed_Funds_Rate",

)

[10]: plot_timeseries(
price_df=fedfunds_monthly,
plot_start_date=start_date,
plot_end_date=end_date,
plot_columns=["FedFunds_Change"],
title="Fed Funds Change In Rate",
x_label="Date",
x_format="Year",
x_tick_rotation=45,
y_label="Rate (%)",

5

y_format="Percentage",
y_format_decimal_places=2,
y_tick_spacing=0.0025,
grid=True,
legend=False,
export_plot=True,
plot_file_name="01_Fed_Funds_Change_In_Rate",

)

1.5.2 Define Fed Policy Cycles

[11]: # # Define manually specified Fed policy cycles
fed_cycles = [
("2002-01-01", "2003-07-01"),
("2003-07-01", "2004-06-01"),
("2004-06-01", "2006-07-01"),
("2004-11-01", "2006-07-01"),
("2006-07-01", "2007-07-01"),
("2007-07-01", "2008-12-01"),
("2008-12-01", "2015-11-01"),
("2015-11-01", "2019-01-01"),
("2019-01-01", "2019-07-01"),
("2019-07-01", "2020-04-01"),
("2020-04-01", "2022-02-01"),
("2022-02-01", "2023-08-01"),

6

("2023-08-01", "2024-08-01"),
("2024-08-01", datetime.today().strftime('%Y-%m-%d')),
]

Optional: assign a name to each cycle
cycle_labels = [f"Cycle {i+1}" for i in range(len(fed_cycles))]

[12]: # Define manually specified Fed policy cycles
fed_cycles = [

("2004-11-01", "2006-07-01"),
("2006-07-01", "2007-07-01"),
("2007-07-01", "2008-12-01"),
("2008-12-01", "2015-11-01"),
("2015-11-01", "2019-01-01"),
("2019-01-01", "2019-07-01"),
("2019-07-01", "2020-04-01"),
("2020-04-01", "2022-02-01"),
("2022-02-01", "2023-08-01"),
("2023-08-01", "2024-08-01"),
("2024-08-01", datetime.today().strftime('%Y-%m-%d')),

]

Optional: assign a name to each cycle
cycle_labels = [f"Cycle {i+1}" for i in range(len(fed_cycles))]

[13]: # Set decimal places
pandas_set_decimal_places(4)

Calc changes by fed cycle defined above
fed_changes = []

for (start, end) in fed_cycles:
start = pd.to_datetime(start)
end = pd.to_datetime(end)

try:
rate_start = fedfunds.loc[start, "FEDFUNDS"]

except KeyError:
rate_start = fedfunds.loc[:start].iloc[-1]["FEDFUNDS"]

try:
rate_end = fedfunds.loc[end, "FEDFUNDS"]

except KeyError:
rate_end = fedfunds.loc[:end].iloc[-1]["FEDFUNDS"]

change = rate_end - rate_start
fed_changes.append(change)

7

fed_changes_df = pd.DataFrame({
"Cycle": cycle_labels,
"FedFunds_Change": fed_changes

})

fed_changes_df

[13]: Cycle FedFunds_Change
0 Cycle 1 0.0331
1 Cycle 2 0.0002
2 Cycle 3 -0.0510
3 Cycle 4 -0.0004
4 Cycle 5 0.0228
5 Cycle 6 0.0000
6 Cycle 7 -0.0235
7 Cycle 8 0.0003
8 Cycle 9 0.0525
9 Cycle 10 0.0000
10 Cycle 11 -0.0161

[14]: # Copy this <!-- INSERT_01_Fed_Funds_Cycle_Change_HERE --> to index_temp.md
export_track_md_deps(

dep_file=dep_file,
md_filename="01_Fed_Funds_Cycle_Change.md",
content=fed_changes_df.to_markdown(floatfmt=".4f"),
output_type="markdown",

)

� Exported and tracked: 01_Fed_Funds_Cycle_Change.md

1.6 Return Performance By Fed Policy Cycle
1.6.1 Stocks (SPY)

[15]: # Set decimal places
pandas_set_decimal_places(2)

yf_pull_data(
base_directory=DATA_DIR,
ticker="SPY",
source="Yahoo_Finance",
asset_class="Exchange_Traded_Funds",
excel_export=True,
pickle_export=True,
output_confirmation=True,

)

[*********************100%***********************] 1 of 1 completed

8

The first and last date of data for SPY is:

Close High Low Open Volume
Date
1993-01-29 24.24 24.26 24.14 24.26 1003200

Close High Low Open Volume
Date
2026-01-23 689.23 690.96 687.16 688.15 63016300

Yahoo Finance data complete for SPY

[15]: Close High Low Open Volume
Date
1993-01-29 24.24 24.26 24.14 24.26 1003200
1993-02-01 24.41 24.41 24.26 24.26 480500
1993-02-02 24.47 24.48 24.34 24.40 201300
1993-02-03 24.72 24.74 24.48 24.50 529400
1993-02-04 24.83 24.88 24.53 24.81 531500
… … … … … …
2026-01-16 691.66 694.25 690.10 693.66 79289200
2026-01-20 677.58 684.77 676.57 681.49 111623300
2026-01-21 685.40 688.74 678.13 679.65 127844500
2026-01-22 688.98 691.13 686.92 689.85 77112200
2026-01-23 689.23 690.96 687.16 688.15 63016300

[8303 rows x 5 columns]

[16]: spy = load_data(
base_directory=DATA_DIR,
ticker="SPY",
source="Yahoo_Finance",
asset_class="Exchange_Traded_Funds",
timeframe="Daily",
file_format="pickle",

)

Filter SPY to date range
spy = spy[(spy.index >= pd.to_datetime(start_date)) & (spy.index <= pd.

↪to_datetime(end_date))]

Resample to monthly frequency
spy_monthly = spy.resample("M").last()
spy_monthly["Monthly_Return"] = spy_monthly["Close"].pct_change()

[17]: df_info(spy_monthly)

9

The columns, shape, and data types are:
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 252 entries, 2004-11-30 to 2025-10-31
Freq: ME
Data columns (total 6 columns):
Column Non-Null Count Dtype
--- ------ -------------- -----
0 Close 252 non-null float64
1 High 252 non-null float64
2 Low 252 non-null float64
3 Open 252 non-null float64
4 Volume 252 non-null int64
5 Monthly_Return 251 non-null float64
dtypes: float64(5), int64(1)
memory usage: 13.8 KB
None
The first 5 rows are:

Close High Low Open Volume Monthly_Return
Date
2004-11-30 79.60 79.83 79.43 79.67 53685200 NaN
2004-12-31 81.99 82.53 81.95 82.28 28648800 0.03
2005-01-31 80.15 80.22 79.85 80.01 52532700 -0.02
2005-02-28 81.83 82.28 81.43 82.18 69381300 0.02
2005-03-31 80.33 80.67 80.27 80.49 64575400 -0.02

The last 5 rows are:

Close High Low Open Volume Monthly_Return
Date
2025-06-30 614.33 615.69 611.53 613.86 92502500 0.05
2025-07-31 628.48 636.20 627.17 635.81 103385200 0.02
2025-08-31 641.37 644.15 639.47 643.78 74522200 0.02
2025-09-30 664.22 664.69 659.66 660.98 86288000 0.04
2025-10-31 680.05 683.06 677.24 683.02 87164100 0.02

[18]: # Copy this <!-- INSERT_02_SPY_Monthly_HERE --> to index_temp.md
export_track_md_deps(

dep_file=dep_file,
md_filename="02_SPY_Monthly.md",
content=df_info_markdown(df=spy_monthly, decimal_places=2),
output_type="markdown",

)

� Exported and tracked: 02_SPY_Monthly.md

[19]: plot_timeseries(
price_df=spy,
plot_start_date=start_date,

10

plot_end_date=end_date,
plot_columns=["Close"],
title="SPY Daily Close Price",
x_label="Date",
x_format="Year",
x_tick_rotation=45,
y_label="Price ($)",
y_format="Decimal",
y_format_decimal_places=0,
y_tick_spacing=50,
grid=True,
legend=False,
export_plot=True,
plot_file_name="02_SPY_Price",

)

[20]: spy_cycle_df = calc_fed_cycle_asset_performance(
fed_cycles=fed_cycles,
cycle_labels=cycle_labels,
fed_changes=fed_changes,
monthly_df=spy_monthly,

)

spy_cycle_df

11

[20]: Cycle Start End Months CumulativeReturn \
0 Cycle 1 2004-11-01 2006-07-01 20 0.11
1 Cycle 2 2006-07-01 2007-07-01 12 0.20
2 Cycle 3 2007-07-01 2008-12-01 17 -0.39
3 Cycle 4 2008-12-01 2015-11-01 83 1.67
4 Cycle 5 2015-11-01 2019-01-01 38 0.28
5 Cycle 6 2019-01-01 2019-07-01 6 0.18
6 Cycle 7 2019-07-01 2020-04-01 9 -0.11
7 Cycle 8 2020-04-01 2022-02-01 22 0.79
8 Cycle 9 2022-02-01 2023-08-01 18 0.04
9 Cycle 10 2023-08-01 2024-08-01 12 0.22
10 Cycle 11 2024-08-01 2026-01-26 15 0.26

CumulativeReturnPct AverageMonthlyReturn AverageMonthlyReturnPct \
0 11.32 0.01 0.59
1 20.36 0.02 1.57
2 -38.55 -0.03 -2.67
3 167.34 0.01 1.28
4 28.30 0.01 0.70
5 18.33 0.03 2.95
6 -10.67 -0.01 -1.10
7 79.13 0.03 2.78
8 4.18 0.00 0.40
9 22.00 0.02 1.75
10 25.72 0.02 1.59

AnnualizedReturn AnnualizedReturnPct Volatility FedFundsChange \
0 0.07 6.64 0.08 0.03
1 0.20 20.36 0.07 0.00
2 -0.29 -29.09 0.19 -0.05
3 0.15 15.28 0.15 -0.00
4 0.08 8.19 0.11 0.02
5 0.40 40.01 0.18 0.00
6 -0.14 -13.96 0.19 -0.02
7 0.37 37.43 0.16 0.00
8 0.03 2.77 0.21 0.05
9 0.22 22.00 0.15 0.00
10 0.20 20.09 0.11 -0.02

FedFundsChange_bps FFR_AnnualizedChange FFR_AnnualizedChange_bps \
0 331.00 0.02 198.60
1 2.00 0.00 2.00
2 -510.00 -0.04 -360.00
3 -4.00 -0.00 -0.58
4 228.00 0.01 72.00
5 0.00 0.00 0.00
6 -235.00 -0.03 -313.33

12

7 3.00 0.00 1.64
8 525.00 0.03 350.00
9 0.00 0.00 0.00
10 -161.00 -0.01 -128.80

Label
0 Cycle 1, 2004-11-01 to 2006-07-01
1 Cycle 2, 2006-07-01 to 2007-07-01
2 Cycle 3, 2007-07-01 to 2008-12-01
3 Cycle 4, 2008-12-01 to 2015-11-01
4 Cycle 5, 2015-11-01 to 2019-01-01
5 Cycle 6, 2019-01-01 to 2019-07-01
6 Cycle 7, 2019-07-01 to 2020-04-01
7 Cycle 8, 2020-04-01 to 2022-02-01
8 Cycle 9, 2022-02-01 to 2023-08-01
9 Cycle 10, 2023-08-01 to 2024-08-01
10 Cycle 11, 2024-08-01 to 2026-01-26

[21]: # Copy this <!-- INSERT_02_SPY_Cycle_DF_HERE --> to index_temp.md
export_track_md_deps(

dep_file=dep_file,
md_filename="02_SPY_Cycle_DF.md",
content=spy_cycle_df.to_markdown(floatfmt=".2f"),
output_type="markdown",

)

� Exported and tracked: 02_SPY_Cycle_DF.md

[22]: plot_bar_returns_ffr_change(
cycle_df=spy_cycle_df,
asset_label="SPY",
annualized_or_cumulative="Cumulative",
index_num="02",

)

13

[23]: plot_bar_returns_ffr_change(
cycle_df=spy_cycle_df,
asset_label="SPY",
annualized_or_cumulative="Annualized",
index_num="02",

)

14

[24]: df = spy_cycle_df

####################################
Don't modify below this line
####################################

Run OLS regression with statsmodels
X = df["FFR_AnnualizedChange_bps"]
y = df["AnnualizedReturnPct"]
X = sm.add_constant(X)
model = sm.OLS(y, X).fit()
print(model.summary())
print(f"Intercept: {model.params[0]}, Slope: {model.params[1]}") # Intercept␣

↪and slope

Calc X and Y values for regression line
X_vals = np.linspace(X.min(), X.max(), 100)
Y_vals = model.params[0] + model.params[1] * X_vals

OLS Regression Results
===

15

Dep. Variable: AnnualizedReturnPct R-squared: 0.176
Model: OLS Adj. R-squared: 0.085
Method: Least Squares F-statistic: 1.928
Date: Mon, 26 Jan 2026 Prob (F-statistic): 0.198
Time: 12:06:34 Log-Likelihood: -47.196
No. Observations: 11 AIC: 98.39
Df Residuals: 9 BIC: 99.19
Df Model: 1
Covariance Type: nonrobust
==
============

coef std err t P>|t| [0.025
0.975]
--

const 12.4815 5.909 2.112 0.064 -0.886
25.849
FFR_AnnualizedChange_bps 0.0424 0.031 1.389 0.198 -0.027
0.112
==
Omnibus: 1.103 Durbin-Watson: 3.070
Prob(Omnibus): 0.576 Jarque-Bera (JB): 0.674
Skew: 0.021 Prob(JB): 0.714
Kurtosis: 1.788 Cond. No. 194.
==

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly
specified.
Intercept: 12.481508545114949, Slope: 0.04242618089044424

[25]: # Copy this <!-- INSERT_02_SPY_Annualized_Regression_HERE --> to index_temp.md
export_track_md_deps(

dep_file=dep_file,
md_filename="02_SPY_Annualized_Regression.md",
content=sm_ols_summary_markdown(result=model,␣

↪file_path="02_SPY_Annualized_Regression.md"),
output_type="text",

)

� Exported and tracked: 02_SPY_Annualized_Regression.md

[26]: plot_scatter_regression_ffr_vs_returns(
cycle_df=spy_cycle_df,
asset_label="SPY",
index_num="02",
x_vals=X_vals,
y_vals=Y_vals,

16

intercept=model.params[0],
slope=model.params[1],

)

1.6.2 Bonds (TLT)

[27]: # Set decimal places
pandas_set_decimal_places(2)

yf_pull_data(
base_directory=DATA_DIR,
ticker="TLT",
source="Yahoo_Finance",
asset_class="Exchange_Traded_Funds",
excel_export=True,
pickle_export=True,
output_confirmation=True,

)

[*********************100%***********************] 1 of 1 completed

The first and last date of data for TLT is:

Close High Low Open Volume
Date

17

2002-07-30 36.65 36.82 36.65 36.75 6100

Close High Low Open Volume
Date
2026-01-23 87.93 88.03 87.50 87.83 35959500

Yahoo Finance data complete for TLT

[27]: Close High Low Open Volume
Date
2002-07-30 36.65 36.82 36.65 36.75 6100
2002-07-31 37.10 37.22 36.82 36.84 29400
2002-08-01 37.31 37.32 37.11 37.11 25000
2002-08-02 37.70 37.81 37.26 37.39 52800
2002-08-05 37.86 37.96 37.70 37.78 61100
… … … … … …
2026-01-16 87.80 88.32 87.71 88.13 46382400
2026-01-20 86.65 87.03 86.54 86.63 66009500
2026-01-21 87.31 87.48 86.62 86.80 51220100
2026-01-22 87.69 87.76 87.14 87.27 42419300
2026-01-23 87.93 88.03 87.50 87.83 35959500

[5910 rows x 5 columns]

[28]: tlt = load_data(
base_directory=DATA_DIR,
ticker="TLT",
source="Yahoo_Finance",
asset_class="Exchange_Traded_Funds",
timeframe="Daily",
file_format="pickle",

)

Filter TLT to date range
tlt = tlt[(tlt.index >= pd.to_datetime(start_date)) & (tlt.index <= pd.

↪to_datetime(end_date))]

Resample to monthly frequency
tlt_monthly = tlt.resample("M").last()
tlt_monthly["Monthly_Return"] = tlt_monthly["Close"].pct_change()

[29]: df_info(tlt_monthly)

The columns, shape, and data types are:
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 252 entries, 2004-11-30 to 2025-10-31
Freq: ME
Data columns (total 6 columns):

18

Column Non-Null Count Dtype
--- ------ -------------- -----
0 Close 252 non-null float64
1 High 252 non-null float64
2 Low 252 non-null float64
3 Open 252 non-null float64
4 Volume 252 non-null int64
5 Monthly_Return 251 non-null float64
dtypes: float64(5), int64(1)
memory usage: 13.8 KB
None
The first 5 rows are:

Close High Low Open Volume Monthly_Return
Date
2004-11-30 43.80 43.91 43.64 43.80 1754500 NaN
2004-12-31 44.96 45.01 44.84 44.87 1056400 0.03
2005-01-31 46.57 46.59 46.35 46.37 1313900 0.04
2005-02-28 45.88 46.43 45.82 46.43 2797300 -0.01
2005-03-31 45.67 45.70 45.43 45.61 2410900 -0.00

The last 5 rows are:

Close High Low Open Volume Monthly_Return
Date
2025-06-30 86.00 86.18 85.37 85.62 53695200 0.03
2025-07-31 85.02 85.50 84.94 85.22 49814100 -0.01
2025-08-31 85.03 85.28 84.87 85.18 41686400 0.00
2025-09-30 88.08 88.74 87.92 88.37 38584000 0.04
2025-10-31 89.30 89.66 89.21 89.56 38247300 0.01

[30]: # Copy this <!-- INSERT_03_TLT_Monthly_HERE --> to index_temp.md
export_track_md_deps(

dep_file=dep_file,
md_filename="03_TLT_Monthly.md",
content=df_info_markdown(df=tlt_monthly, decimal_places=2),
output_type="markdown",

)

� Exported and tracked: 03_TLT_Monthly.md

[31]: plot_timeseries(
price_df=tlt,
plot_start_date=start_date,
plot_end_date=end_date,
plot_columns=["Close"],
title="TLT Daily Close Price",
x_label="Date",
x_format="Year",

19

x_tick_rotation=45,
y_label="Price ($)",
y_format="Decimal",
y_format_decimal_places=0,
y_tick_spacing=10,
grid=True,
legend=False,
export_plot=True,
plot_file_name="03_TLT_Price",

)

[32]: tlt_cycle_df = calc_fed_cycle_asset_performance(
fed_cycles=fed_cycles,
cycle_labels=cycle_labels,
fed_changes=fed_changes,
monthly_df=tlt_monthly,

)

tlt_cycle_df

[32]: Cycle Start End Months CumulativeReturn \
0 Cycle 1 2004-11-01 2006-07-01 20 0.04
1 Cycle 2 2006-07-01 2007-07-01 12 0.06
2 Cycle 3 2007-07-01 2008-12-01 17 0.32
3 Cycle 4 2008-12-01 2015-11-01 83 0.46

20

4 Cycle 5 2015-11-01 2019-01-01 38 0.07
5 Cycle 6 2019-01-01 2019-07-01 6 0.10
6 Cycle 7 2019-07-01 2020-04-01 9 0.26
7 Cycle 8 2020-04-01 2022-02-01 22 -0.11
8 Cycle 9 2022-02-01 2023-08-01 18 -0.27
9 Cycle 10 2023-08-01 2024-08-01 12 -0.02
10 Cycle 11 2024-08-01 2026-01-26 15 0.00

CumulativeReturnPct AverageMonthlyReturn AverageMonthlyReturnPct \
0 4.23 0.00 0.25
1 5.76 0.00 0.49
2 32.42 0.02 1.73
3 45.67 0.01 0.55
4 7.42 0.00 0.23
5 10.48 0.02 1.73
6 26.18 0.03 2.73
7 -11.33 -0.00 -0.50
8 -26.96 -0.02 -1.62
9 -1.52 0.00 0.02
10 0.42 0.00 0.08

AnnualizedReturn AnnualizedReturnPct Volatility FedFundsChange \
0 0.03 2.51 0.09 0.03
1 0.06 5.76 0.07 0.00
2 0.22 21.92 0.14 -0.05
3 0.06 5.59 0.15 -0.00
4 0.02 2.29 0.10 0.02
5 0.22 22.05 0.13 0.00
6 0.36 36.34 0.18 -0.02
7 -0.06 -6.35 0.11 0.00
8 -0.19 -18.90 0.17 0.05
9 -0.02 -1.52 0.20 0.00
10 0.00 0.33 0.11 -0.02

FedFundsChange_bps FFR_AnnualizedChange FFR_AnnualizedChange_bps \
0 331.00 0.02 198.60
1 2.00 0.00 2.00
2 -510.00 -0.04 -360.00
3 -4.00 -0.00 -0.58
4 228.00 0.01 72.00
5 0.00 0.00 0.00
6 -235.00 -0.03 -313.33
7 3.00 0.00 1.64
8 525.00 0.03 350.00
9 0.00 0.00 0.00
10 -161.00 -0.01 -128.80

21

Label
0 Cycle 1, 2004-11-01 to 2006-07-01
1 Cycle 2, 2006-07-01 to 2007-07-01
2 Cycle 3, 2007-07-01 to 2008-12-01
3 Cycle 4, 2008-12-01 to 2015-11-01
4 Cycle 5, 2015-11-01 to 2019-01-01
5 Cycle 6, 2019-01-01 to 2019-07-01
6 Cycle 7, 2019-07-01 to 2020-04-01
7 Cycle 8, 2020-04-01 to 2022-02-01
8 Cycle 9, 2022-02-01 to 2023-08-01
9 Cycle 10, 2023-08-01 to 2024-08-01
10 Cycle 11, 2024-08-01 to 2026-01-26

[33]: # Copy this <!-- INSERT_03_TLT_Cycle_DF_HERE --> to index_temp.md
export_track_md_deps(

dep_file=dep_file,
md_filename="03_TLT_Cycle_DF.md",
content=tlt_cycle_df.to_markdown(floatfmt=".2f"),
output_type="markdown",

)

� Exported and tracked: 03_TLT_Cycle_DF.md

[34]: plot_bar_returns_ffr_change(
cycle_df=tlt_cycle_df,
asset_label="TLT",
annualized_or_cumulative="Cumulative",
index_num="03",

)

22

[35]: plot_bar_returns_ffr_change(
cycle_df=tlt_cycle_df,
asset_label="TLT",
annualized_or_cumulative="Annualized",
index_num="03",

)

23

[36]: df = tlt_cycle_df

####################################
Don't modify below this line
####################################

Run OLS regression with statsmodels
X = df["FFR_AnnualizedChange_bps"]
y = df["AnnualizedReturnPct"]
X = sm.add_constant(X)
model = sm.OLS(y, X).fit()
print(model.summary())
print(f"Intercept: {model.params[0]}, Slope: {model.params[1]}") # Intercept␣

↪and slope

Calc X and Y values for regression line
X_vals = np.linspace(X.min(), X.max(), 100)
Y_vals = model.params[0] + model.params[1] * X_vals

OLS Regression Results
===

24

Dep. Variable: AnnualizedReturnPct R-squared: 0.615
Model: OLS Adj. R-squared: 0.573
Method: Least Squares F-statistic: 14.39
Date: Mon, 26 Jan 2026 Prob (F-statistic): 0.00426
Time: 12:06:37 Log-Likelihood: -39.782
No. Observations: 11 AIC: 83.56
Df Residuals: 9 BIC: 84.36
Df Model: 1
Covariance Type: nonrobust
==
============

coef std err t P>|t| [0.025
0.975]
--

const 5.4077 3.012 1.796 0.106 -1.405
12.221
FFR_AnnualizedChange_bps -0.0591 0.016 -3.794 0.004 -0.094
-0.024
==
Omnibus: 0.635 Durbin-Watson: 1.199
Prob(Omnibus): 0.728 Jarque-Bera (JB): 0.621
Skew: 0.387 Prob(JB): 0.733
Kurtosis: 2.131 Cond. No. 194.
==

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly
specified.
Intercept: 5.407713843801814, Slope: -0.059076861433875985

[37]: # Copy this <!-- INSERT_03_TLT_Annualized_Regression_HERE --> to index_temp.md
export_track_md_deps(

dep_file=dep_file,
md_filename="03_TLT_Annualized_Regression.md",
content=sm_ols_summary_markdown(result=model,␣

↪file_path="03_TLT_Annualized_Regression.md"),
output_type="text",

)

� Exported and tracked: 03_TLT_Annualized_Regression.md

[38]: plot_scatter_regression_ffr_vs_returns(
cycle_df=tlt_cycle_df,
asset_label="TLT",
index_num="03",
x_vals=X_vals,
y_vals=Y_vals,

25

intercept=model.params[0],
slope=model.params[1],

)

1.6.3 Gold (GLD)

[39]: # Set decimal places
pandas_set_decimal_places(2)

yf_pull_data(
base_directory=DATA_DIR,
ticker="GLD",
source="Yahoo_Finance",
asset_class="Exchange_Traded_Funds",
excel_export=True,
pickle_export=True,
output_confirmation=True,

)

[*********************100%***********************] 1 of 1 completed

The first and last date of data for GLD is:

Close High Low Open Volume
Date

26

2004-11-18 44.38 44.49 44.07 44.43 5992000

Close High Low Open Volume
Date
2026-01-23 458.00 458.75 453.45 454.11 21497000

Yahoo Finance data complete for GLD

[39]: Close High Low Open Volume
Date
2004-11-18 44.38 44.49 44.07 44.43 5992000
2004-11-19 44.78 44.92 44.47 44.49 11655300
2004-11-22 44.95 44.97 44.74 44.75 11996000
2004-11-23 44.75 44.92 44.72 44.88 3169200
2004-11-24 45.05 45.05 44.79 44.93 6105100
… … … … … …
2026-01-16 421.29 424.80 417.04 422.80 20951600
2026-01-20 437.23 438.14 434.10 436.69 21308100
2026-01-21 443.60 448.00 437.11 446.87 38830200
2026-01-22 451.79 452.98 443.56 443.84 19251200
2026-01-23 458.00 458.75 453.45 454.11 21497000

[5328 rows x 5 columns]

[40]: gld = load_data(
base_directory=DATA_DIR,
ticker="GLD",
source="Yahoo_Finance",
asset_class="Exchange_Traded_Funds",
timeframe="Daily",
file_format="pickle",

)

Filter GLD to date range
gld = gld[(gld.index >= pd.to_datetime(start_date)) & (gld.index <= pd.

↪to_datetime(end_date))]

Resample to monthly frequency
gld_monthly = gld.resample("M").last()
gld_monthly["Monthly_Return"] = gld_monthly["Close"].pct_change()

[41]: df_info(gld_monthly)

The columns, shape, and data types are:
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 252 entries, 2004-11-30 to 2025-10-31
Freq: ME
Data columns (total 6 columns):

27

Column Non-Null Count Dtype
--- ------ -------------- -----
0 Close 252 non-null float64
1 High 252 non-null float64
2 Low 252 non-null float64
3 Open 252 non-null float64
4 Volume 252 non-null int64
5 Monthly_Return 251 non-null float64
dtypes: float64(5), int64(1)
memory usage: 13.8 KB
None
The first 5 rows are:

Close High Low Open Volume Monthly_Return
Date
2004-11-30 45.12 45.41 44.82 45.37 3857200 NaN
2004-12-31 43.80 43.94 43.73 43.85 531600 -0.03
2005-01-31 42.22 42.30 41.96 42.21 1692400 -0.04
2005-02-28 43.53 43.74 43.52 43.68 755300 0.03
2005-03-31 42.82 42.87 42.70 42.87 1363200 -0.02

The last 5 rows are:

Close High Low Open Volume Monthly_Return
Date
2025-06-30 304.83 304.92 301.95 302.39 8192100 0.00
2025-07-31 302.96 304.61 302.86 304.59 8981000 -0.01
2025-08-31 318.07 318.09 314.64 314.72 15642600 0.05
2025-09-30 355.47 355.57 350.87 351.13 13312400 0.12
2025-10-31 368.12 370.66 365.50 370.47 11077900 0.04

[42]: # Copy this <!-- INSERT_04_GLD_Monthly_HERE --> to index_temp.md
export_track_md_deps(

dep_file=dep_file,
md_filename="04_GLD_Monthly.md",
content=df_info_markdown(df=gld_monthly, decimal_places=2),
output_type="markdown",

)

� Exported and tracked: 04_GLD_Monthly.md

[43]: plot_timeseries(
price_df=gld,
plot_start_date=start_date,
plot_end_date=end_date,
plot_columns=["Close"],
title="GLD Daily Close Price",
x_label="Date",
x_format="Year",

28

x_tick_rotation=45,
y_label="Price ($)",
y_format="Decimal",
y_format_decimal_places=0,
y_tick_spacing=25,
grid=True,
legend=False,
export_plot=True,
plot_file_name="04_GLD_Price",

)

[44]: gld_cycle_df = calc_fed_cycle_asset_performance(
fed_cycles=fed_cycles,
cycle_labels=cycle_labels,
fed_changes=fed_changes,
monthly_df=gld_monthly,

)

gld_cycle_df

[44]: Cycle Start End Months CumulativeReturn \
0 Cycle 1 2004-11-01 2006-07-01 20 0.36
1 Cycle 2 2006-07-01 2007-07-01 12 0.05
2 Cycle 3 2007-07-01 2008-12-01 17 0.25
3 Cycle 4 2008-12-01 2015-11-01 83 0.36

29

4 Cycle 5 2015-11-01 2019-01-01 38 0.11
5 Cycle 6 2019-01-01 2019-07-01 6 0.10
6 Cycle 7 2019-07-01 2020-04-01 9 0.11
7 Cycle 8 2020-04-01 2022-02-01 22 0.14
8 Cycle 9 2022-02-01 2023-08-01 18 0.08
9 Cycle 10 2023-08-01 2024-08-01 12 0.24
10 Cycle 11 2024-08-01 2026-01-26 15 0.62

CumulativeReturnPct AverageMonthlyReturn AverageMonthlyReturnPct \
0 35.70 0.02 1.73
1 4.96 0.00 0.45
2 24.96 0.02 1.59
3 36.10 0.01 0.51
4 10.93 0.00 0.35
5 9.86 0.02 1.63
6 11.15 0.01 1.24
7 13.54 0.01 0.69
8 8.48 0.01 0.53
9 24.24 0.02 1.89
10 62.49 0.03 3.36

AnnualizedReturn AnnualizedReturnPct Volatility FedFundsChange \
0 0.20 20.10 0.17 0.03
1 0.05 4.96 0.11 0.00
2 0.17 17.03 0.26 -0.05
3 0.05 4.56 0.18 -0.00
4 0.03 3.33 0.14 0.02
5 0.21 20.68 0.12 0.00
6 0.15 15.13 0.13 -0.02
7 0.07 7.17 0.16 0.00
8 0.06 5.58 0.14 0.05
9 0.24 24.24 0.13 0.00
10 0.47 47.46 0.14 -0.02

FedFundsChange_bps FFR_AnnualizedChange FFR_AnnualizedChange_bps \
0 331.00 0.02 198.60
1 2.00 0.00 2.00
2 -510.00 -0.04 -360.00
3 -4.00 -0.00 -0.58
4 228.00 0.01 72.00
5 0.00 0.00 0.00
6 -235.00 -0.03 -313.33
7 3.00 0.00 1.64
8 525.00 0.03 350.00
9 0.00 0.00 0.00
10 -161.00 -0.01 -128.80

30

Label
0 Cycle 1, 2004-11-01 to 2006-07-01
1 Cycle 2, 2006-07-01 to 2007-07-01
2 Cycle 3, 2007-07-01 to 2008-12-01
3 Cycle 4, 2008-12-01 to 2015-11-01
4 Cycle 5, 2015-11-01 to 2019-01-01
5 Cycle 6, 2019-01-01 to 2019-07-01
6 Cycle 7, 2019-07-01 to 2020-04-01
7 Cycle 8, 2020-04-01 to 2022-02-01
8 Cycle 9, 2022-02-01 to 2023-08-01
9 Cycle 10, 2023-08-01 to 2024-08-01
10 Cycle 11, 2024-08-01 to 2026-01-26

[45]: # Copy this <!-- INSERT_04_GLD_Cycle_DF_HERE --> to index_temp.md
export_track_md_deps(

dep_file=dep_file,
md_filename="04_GLD_Cycle_DF.md",
content=gld_cycle_df.to_markdown(floatfmt=".2f"),
output_type="markdown",

)

� Exported and tracked: 04_GLD_Cycle_DF.md

[46]: plot_bar_returns_ffr_change(
cycle_df=gld_cycle_df,
asset_label="GLD",
annualized_or_cumulative="Cumulative",
index_num="04",

)

31

[47]: plot_bar_returns_ffr_change(
cycle_df=gld_cycle_df,
asset_label="GLD",
annualized_or_cumulative="Annualized",
index_num="04",

)

32

[48]: df = gld_cycle_df

####################################
Don't modify below this line
####################################

Run OLS regression with statsmodels
X = df["FFR_AnnualizedChange_bps"]
y = df["AnnualizedReturnPct"]
X = sm.add_constant(X)
model = sm.OLS(y, X).fit()
print(model.summary())
print(f"Intercept: {model.params[0]}, Slope: {model.params[1]}") # Intercept␣

↪and slope

Calc X and Y values for regression line
X_vals = np.linspace(X.min(), X.max(), 100)
Y_vals = model.params[0] + model.params[1] * X_vals

OLS Regression Results
===

33

Dep. Variable: AnnualizedReturnPct R-squared: 0.093
Model: OLS Adj. R-squared: -0.008
Method: Least Squares F-statistic: 0.9214
Date: Mon, 26 Jan 2026 Prob (F-statistic): 0.362
Time: 12:06:40 Log-Likelihood: -42.778
No. Observations: 11 AIC: 89.56
Df Residuals: 9 BIC: 90.35
Df Model: 1
Covariance Type: nonrobust
==
============

coef std err t P>|t| [0.025
0.975]
--

const 15.1586 3.955 3.833 0.004 6.213
24.104
FFR_AnnualizedChange_bps -0.0196 0.020 -0.960 0.362 -0.066
0.027
==
Omnibus: 7.682 Durbin-Watson: 0.913
Prob(Omnibus): 0.021 Jarque-Bera (JB): 3.504
Skew: 1.305 Prob(JB): 0.173
Kurtosis: 3.912 Cond. No. 194.
==

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly
specified.
Intercept: 15.158628269088016, Slope: -0.019626313878624208

[49]: # Copy this <!-- INSERT_04_GLD_Annualized_Regression_HERE --> to index_temp.md
export_track_md_deps(

dep_file=dep_file,
md_filename="04_GLD_Annualized_Regression.md",
content=sm_ols_summary_markdown(result=model,␣

↪file_path="04_GLD_Annualized_Regression.md"),
output_type="text",

)

� Exported and tracked: 04_GLD_Annualized_Regression.md

[50]: plot_scatter_regression_ffr_vs_returns(
cycle_df=gld_cycle_df,
asset_label="GLD",
index_num="04",
x_vals=X_vals,
y_vals=Y_vals,

34

intercept=model.params[0],
slope=model.params[1],

)

1.7 Hybrid Portfolio
1.7.1 Asset Allocation

[51]: fed_cycles

[51]: [('2004-11-01', '2006-07-01'),
('2006-07-01', '2007-07-01'),
('2007-07-01', '2008-12-01'),
('2008-12-01', '2015-11-01'),
('2015-11-01', '2019-01-01'),
('2019-01-01', '2019-07-01'),
('2019-07-01', '2020-04-01'),
('2020-04-01', '2022-02-01'),
('2022-02-01', '2023-08-01'),
('2023-08-01', '2024-08-01'),
('2024-08-01', '2026-01-26')]

[52]: cycle_labels

[52]: ['Cycle 1',
'Cycle 2',

35

'Cycle 3',
'Cycle 4',
'Cycle 5',
'Cycle 6',
'Cycle 7',
'Cycle 8',
'Cycle 9',
'Cycle 10',
'Cycle 11']

[53]: # Calculate cumulative returns and drawdown for SPY
spy_monthly['Cumulative_Return'] = (1 + spy_monthly['Monthly_Return']).

↪cumprod() - 1
spy_monthly['Cumulative_Return_Plus_One'] = 1 + spy_monthly['Cumulative_Return']
spy_monthly['Rolling_Max'] = spy_monthly['Cumulative_Return_Plus_One'].cummax()
spy_monthly['Drawdown'] = spy_monthly['Cumulative_Return_Plus_One'] /␣

↪spy_monthly['Rolling_Max'] - 1
spy_monthly.drop(columns=['Cumulative_Return_Plus_One', 'Rolling_Max'],␣

↪inplace=True)

Calculate cumulative returns and drawdown for TLT
tlt_monthly['Cumulative_Return'] = (1 + tlt_monthly['Monthly_Return']).

↪cumprod() - 1
tlt_monthly['Cumulative_Return_Plus_One'] = 1 + tlt_monthly['Cumulative_Return']
tlt_monthly['Rolling_Max'] = tlt_monthly['Cumulative_Return_Plus_One'].cummax()
tlt_monthly['Drawdown'] = tlt_monthly['Cumulative_Return_Plus_One'] /␣

↪tlt_monthly['Rolling_Max'] - 1
tlt_monthly.drop(columns=['Cumulative_Return_Plus_One', 'Rolling_Max'],␣

↪inplace=True)

Isolate the returns for SPY and TLT
spy_ret = spy_monthly['Monthly_Return']
tlt_ret = tlt_monthly['Monthly_Return']

Create a blended portfolio based on Fed policy cycles
portfolio = (

spy_ret[spy_ret.index <= "2007-07-01"]
.combine_first(tlt_ret[(tlt_ret.index >= "2007-07-01") & (tlt_ret.index <=␣

↪"2008-12-01")])
.combine_first(spy_ret[(spy_ret.index > "2008-12-01") & (spy_ret.index <=␣

↪"2019-07-01")])
.combine_first(tlt_ret[(tlt_ret.index >= "2019-07-01") & (tlt_ret.index <=␣

↪"2020-04-01")])
.combine_first(spy_ret[(spy_ret.index > "2020-04-01") & (spy_ret.index <=␣

↪"2024-08-01")])
.combine_first(tlt_ret[tlt_ret.index > "2024-08-01"])

36

)

Convert to DataFrame
portfolio_monthly = portfolio.to_frame(name="Portfolio_Monthly_Return")

Calculate cumulative returns and drawdown for the portfolio
portfolio_monthly['Portfolio_Cumulative_Return'] = (1 +␣

↪portfolio_monthly['Portfolio_Monthly_Return']).cumprod() - 1
portfolio_monthly['Portfolio_Cumulative_Return_Plus_One'] = 1 +␣

↪portfolio_monthly['Portfolio_Cumulative_Return']
portfolio_monthly['Portfolio_Rolling_Max'] =␣

↪portfolio_monthly['Portfolio_Cumulative_Return_Plus_One'].cummax()
portfolio_monthly['Portfolio_Drawdown'] =␣

↪portfolio_monthly['Portfolio_Cumulative_Return_Plus_One'] /␣
↪portfolio_monthly['Portfolio_Rolling_Max'] - 1

portfolio_monthly.drop(columns=['Portfolio_Cumulative_Return_Plus_One',␣
↪'Portfolio_Rolling_Max'], inplace=True)

Merge "spy_monthly" and "tlt_monthly" into "portfolio_monthly" to compare␣
↪cumulative returns

portfolio_monthly = portfolio_monthly.join(
spy_monthly['Monthly_Return'].rename('SPY_Monthly_Return'),
how='left'

).join(
spy_monthly['Cumulative_Return'].rename('SPY_Cumulative_Return'),
how='left'

).join(
spy_monthly['Drawdown'].rename('SPY_Drawdown'),
how='left'

).join(
tlt_monthly['Monthly_Return'].rename('TLT_Monthly_Return'),
how='left'

).join(
tlt_monthly['Cumulative_Return'].rename('TLT_Cumulative_Return'),
how='left'

).join(
tlt_monthly['Drawdown'].rename('TLT_Drawdown'),
how='left'

)

[54]: df_info(portfolio_monthly)

The columns, shape, and data types are:
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 252 entries, 2004-11-30 to 2025-10-31
Freq: ME
Data columns (total 9 columns):

37

Column Non-Null Count Dtype
--- ------ -------------- -----
0 Portfolio_Monthly_Return 251 non-null float64
1 Portfolio_Cumulative_Return 251 non-null float64
2 Portfolio_Drawdown 251 non-null float64
3 SPY_Monthly_Return 251 non-null float64
4 SPY_Cumulative_Return 251 non-null float64
5 SPY_Drawdown 251 non-null float64
6 TLT_Monthly_Return 251 non-null float64
7 TLT_Cumulative_Return 251 non-null float64
8 TLT_Drawdown 251 non-null float64
dtypes: float64(9)
memory usage: 19.7 KB
None
The first 5 rows are:

Portfolio_Monthly_Return Portfolio_Cumulative_Return \
Date
2004-11-30 NaN NaN
2004-12-31 0.03 0.03
2005-01-31 -0.02 0.01
2005-02-28 0.02 0.03
2005-03-31 -0.02 0.01

Portfolio_Drawdown SPY_Monthly_Return SPY_Cumulative_Return \
Date
2004-11-30 NaN NaN NaN
2004-12-31 0.00 0.03 0.03
2005-01-31 -0.02 -0.02 0.01
2005-02-28 -0.00 0.02 0.03
2005-03-31 -0.02 -0.02 0.01

SPY_Drawdown TLT_Monthly_Return TLT_Cumulative_Return \
Date
2004-11-30 NaN NaN NaN
2004-12-31 0.00 0.03 0.03
2005-01-31 -0.02 0.04 0.06
2005-02-28 -0.00 -0.01 0.05
2005-03-31 -0.02 -0.00 0.04

TLT_Drawdown
Date
2004-11-30 NaN
2004-12-31 0.00
2005-01-31 0.00
2005-02-28 -0.01
2005-03-31 -0.02

The last 5 rows are:

38

Portfolio_Monthly_Return Portfolio_Cumulative_Return \
Date
2025-06-30 0.03 19.00
2025-07-31 -0.01 18.78
2025-08-31 0.00 18.78
2025-09-30 0.04 19.49
2025-10-31 0.01 19.77

Portfolio_Drawdown SPY_Monthly_Return SPY_Cumulative_Return \
Date
2025-06-30 -0.07 0.05 6.72
2025-07-31 -0.08 0.02 6.90
2025-08-31 -0.08 0.02 7.06
2025-09-30 -0.05 0.04 7.34
2025-10-31 -0.04 0.02 7.54

SPY_Drawdown TLT_Monthly_Return TLT_Cumulative_Return \
Date
2025-06-30 0.00 0.03 0.96
2025-07-31 0.00 -0.01 0.94
2025-08-31 0.00 0.00 0.94
2025-09-30 0.00 0.04 1.01
2025-10-31 0.00 0.01 1.04

TLT_Drawdown
Date
2025-06-30 -0.41
2025-07-31 -0.41
2025-08-31 -0.41
2025-09-30 -0.39
2025-10-31 -0.39

[55]: # Copy this <!-- INSERT_05_Portfolio_DF_HERE --> to index_temp.md
export_track_md_deps(

dep_file=dep_file,
md_filename="05_Portfolio_DF.md",
content=df_info_markdown(df=portfolio_monthly, decimal_places=3),
output_type="markdown",

)

� Exported and tracked: 05_Portfolio_DF.md

1.7.2 Performance Statistics

[56]: plot_timeseries(
price_df=portfolio_monthly,
plot_start_date=start_date,
plot_end_date=end_date,

39

plot_columns=["Portfolio_Monthly_Return", "SPY_Monthly_Return",␣
↪"TLT_Monthly_Return"],

title="Portfolio, SPY, and TLT Monthly Returns",
x_label="Date",
x_format="Year",
x_tick_rotation=45,
y_label="Return",
y_format="Decimal",
y_format_decimal_places=2,
y_tick_spacing=0.02,
grid=True,
legend=True,
export_plot=True,
plot_file_name="05_Monthly_Returns",

)

[57]: plot_timeseries(
price_df=portfolio_monthly,
plot_start_date=start_date,
plot_end_date=end_date,
plot_columns=["Portfolio_Cumulative_Return", "SPY_Cumulative_Return",␣

↪"TLT_Cumulative_Return"],
title="Portfolio, SPY, and TLT Cumulative Returns",
x_label="Date",
x_format="Year",

40

x_tick_rotation=45,
y_label="Cumulative Return",
y_format="Decimal",
y_format_decimal_places=0,
y_tick_spacing=2,
grid=True,
legend=True,
export_plot=True,
plot_file_name="05_Cumulative_Returns",

)

[58]: plot_timeseries(
price_df=portfolio_monthly,
plot_start_date=start_date,
plot_end_date=end_date,
plot_columns=["Portfolio_Drawdown", "SPY_Drawdown", "TLT_Drawdown"],
title="Portfolio, SPY, and TLT Drawdowns",
x_label="Date",
x_format="Year",
x_tick_rotation=45,
y_label="Drawdown",
y_format="Decimal",
y_format_decimal_places=2,
y_tick_spacing=0.05,
grid=True,

41

legend=True,
export_plot=True,
plot_file_name="05_Drawdowns",

)

[59]: port_sum_stats = summary_stats(
fund_list=["Portfolio", "SPY", "TLT"],
df=portfolio_monthly[["Portfolio_Monthly_Return"]],
period="Monthly",
use_calendar_days=False,
excel_export=False,
pickle_export=False,
output_confirmation=False,

)

spy_sum_stats = summary_stats(
fund_list=["Portfolio", "SPY", "TLT"],
df=portfolio_monthly[["SPY_Monthly_Return"]],
period="Monthly",
use_calendar_days=False,
excel_export=False,
pickle_export=False,
output_confirmation=False,

)

42

tlt_sum_stats = summary_stats(
fund_list=["Portfolio", "SPY", "TLT"],
df=portfolio_monthly[["TLT_Monthly_Return"]],
period="Monthly",
use_calendar_days=False,
excel_export=False,
pickle_export=False,
output_confirmation=False,

)

sum_stats = port_sum_stats.combine_first(spy_sum_stats).
↪combine_first(tlt_sum_stats)

[60]: # Copy this <!-- INSERT_05_Portfolio_Stats_DF_HERE --> to index_temp.md
export_track_md_deps(

dep_file=dep_file,
md_filename="05_Portfolio_Stats_DF.md",
content=sum_stats.to_markdown(floatfmt=".3f"),
output_type="markdown",

)

� Exported and tracked: 05_Portfolio_Stats_DF.md

[]:

43

	Performance Of Various Asset Classes During Fed Policy Cycles
	Python Imports
	Add Directories To Path
	Track Index Dependencies
	Python Functions
	Data Overview
	Acquire & Plot Fed Funds Data
	Define Fed Policy Cycles

	Return Performance By Fed Policy Cycle
	Stocks (SPY)
	Bonds (TLT)
	Gold (GLD)

	Hybrid Portfolio
	Asset Allocation
	Performance Statistics

